推荐引用 推荐引用 Mitrovic, Snezana;Saini, Vinay;Xavier, Alwin;以及 Grobel, Wojciech,“基于人工智能的偏远地区 5G 卫星覆盖节能解决方案”,技术披露共享资源,(2024 年 12 月 18 日)https://www.tdcommons.org/dpubs_series/7657
技术科学学院,普里斯蒂纳大学的科索夫斯卡米特罗维卡大学,KnjazaMiloša7,38220 Kosovska Mitrovica,塞尔维亚,塞尔维亚(1),MB大学,信息技术系,Prote Mateje Br。21,11111 Beograd,塞尔维亚(2)OrcID:1.0000-0002-6557-4553; 2.0000-0002-1492-7638; 3.0000-0002-6867-7259; 4.0000-0002-2240-3420 DOI:10.15199/48.2024.09.55使用机器学习和数字图像处理摘要对电子废物类型进行分类。本文探讨了深度学习和计算机视觉技术在自动分类和检测电子废物(电子废物)中的应用。开发了基于卷积神经网络(CNN)和更快的R-CNN的系统,用于分析电子废物图像并提取有关设备类型和尺寸的信息。该实验是在三个关键电子废物类别的500个现实世界图像的数据集上进行的 - 冰箱,厨房炉灶和电视。结果证明,使用CNN使用R-CNN的92%的分类精度为92%。所获得的数据可以更精确的废物收集计划。主要结论是,深度学习具有改善电子废物管理系统的巨大潜力。Streszczenie。artykuł十BADA ZASTOSOWANIETECHNIKGłęBokiegoUczenia i widzenia komputerowego do automatycznej klasyfikacji i detekcji elektronicznychnychnychnychnychnychnychnychnychodpadów(e-dodpadów)。opracowany zostaje系统oparty na spotowych siecioch sieciach neuronowych(CNN)i szybszym r-cnn做a andaleizyobrazówe-odpadówe-odpadóworaz wydobycia wydobycia wydobycia wydobycia norlakacji norlage o typie typie o typie typie o typie typie t typie imiarachsprzętu。uzyskane daneumoêliwiająbardziejprecyzyjne planowanie zbieraniaodpadów。该实验是在三个关键类别的E Trantpts-Ryfragerators,厨房炉灶和电视的三个关键类别的数据集上进行的。结果显示,使用CNN使用R-CNN的检测精度为92%,结果表现出92%的高分类精度。主要的结论是,深层教学具有改善电子废物管理系统的巨大潜力。(使用机器学习和数字图像处理的电子废物类型的分类)关键词:电子废物,卷积神经网络,计算机视觉,废物分类。关键字:电子废物,编织神经网络,计算机视觉,废物分类。引言电子废物(电子废物)的财产管理正在随着全球干燥废物量增长而变得越来越多。尽管电子垃圾容器高度有价值用于回收利用,但它也可以包含汞,铅和镉等物质。因此,收集,分类和处理电子废物的开发有效系统至关重要。本文研究了使用图像识别技术提高电子快速管理效率的概念。所考虑的系统是基于通过拍摄废物对象获得的视觉数据的分析。目的是通过简单的用户界面来促进电子废物的识别和分类,从而巩固了智能战斗的无处不在和更轻松的互联网访问。这种方法的核心组成部分是深层神经网络,特别是深层卷积神经网络(CNN)的应用,用于图像分析。这种创新的方法使个人可以通过应用程序或服务器将废物对象的照片发送给收集公司,在这种情况下,将使用图像识别技术自动识别废物类型。第一阶段涉及废物类型分类,为此使用深层卷积神经网络。CNN是一种旨在从图像中提取复杂特征的体系结构,并根据某些标准学会区分它们。该技术可以具有很高的准确性对不同的电子废物类别进行可靠的分类。第二个关键组件是更快的区域卷积神经网络(R-CNN),这是图像中的高级对象检测技术。该网络可从电子废物照片中识别设备类别和尺寸估计。将R-CNN集成到系统中,可以对图像中的废物组件进行更详细的了解,这对于成功的废物管理至关重要。研究结果表明,识别和分类所选的电子废物类别的准确性很高,精度为90-97%。这种准确性确认了所提出的方法的效率,并表明其在现实世界中的潜力。管理电子废物正在成为现代社会和经济的组成部分