新型动态温度传感器:项目期间成功设计、开发并测试了一种新型光纤超高速燃烧高温计。新仪器可追溯至国际温标 ITS-90,温度范围为 1073 K 至 2873 K,残差 < 1%。其速度已在炸药产生的火球测试中得到验证。新型动态压力传感器:项目期间设计了一种改进的新型动态压力传感器(图 4)。其测量范围高达约 35 MPa,工作温度范围高达 400 °C。由于其结构坚固(已获专利),与许多现有产品相比,传感器的使用寿命应大大延长。
计量学,一门精确测量的科学,越来越多地利用量子效应和量子技术 [1] 基于原子和固态物理、激光技术和纳米技术的进步,计量学家现在能够测量单个量子 - 操纵借助这种量子计量方法,可以检测光子、电子或通量量子等激发,单位可以与基本常数相关联,就像已经发生的情况一样。由马克斯·普朗克于 1900 年提出 [2] 以这种方式定义的单位是通用的,即独立于工件、材料属性和位置。它是由基本常数随时间的任何变化给出的。根据目前的了解,每年可指定的上限为 10 – 16 [3] 为了利用这些优势,米公约计划从 2018 年起实施国际单位制 (SI)定义常数数值的确定 [4] 因此,量子标准对于 SI 单位的表示和传输的重要性在未来将变得更加重要。在电气计量中,量子标准已经在很大程度上得到使用。重现并保留所使用的电气单位 使用约瑟夫森效应重现电压单位伏特 重现电气单位欧姆
数字信息和通信技术现已在生活的许多领域得到应用,也将成为德国能源供应重组的重要组成部分。从传统的中央能源发电到现代能源基础设施的成功转变,例如B. 大量分散的供电单元、供电线路上的双向能量流和远程可读的消耗表可以通过公共 IT 网络安全可靠地捕获、处理和转发大量数据。智能电表、智能测量系统和智能网络(智能电网)等术语代表能够改进消费可视化和改进网络控制的流程和技术。为了确保隐私和保护能源基础设施,联邦信息安全办公室代表联邦经济事务和能源部制定了安全标准和规范,满足数据保护和数据安全的最高要求。为了实现这些要求,德国的数据通信将来必须通过经过认证的智能电表网关进行,以便在所有传输通道上进行,例如转发测量值和控制仪表
对利用电力传输和处理信息产生了浓厚的兴趣。他申请的第一项专利是一台电动投票记录机 (1868);随后,他又发明了各种电报设备,直到 1869 年创立第一家公司 [2]。当时,大西洋两岸的技术人员和科学家主要将电视为一种通信媒介。直到发现了电动马达的原理,并在工程发明中实现了该原理(尤其是维尔纳·冯·西门子),电力供应时代才开始。电力首先在需要照明和力传输应用的地方产生。爱迪生首次在技术上实现了通过网络向消费者集中发电和配送的概念。他意识到大型连续运行发电机在效率方面具有哪些优势,他尤其认识到电能与天然气相比的特殊优势——即它可以以相对清洁和安全的方式长距离输送。当创意能给你带来金钱时,创意就特别有吸引力。爱迪生很早就意识到了这一点。因此,当他为自己的发明申请专利时,他采用的策略是“覆盖一切”原则:他拥有所有可以被视为专利的元素作为他的知识产权,因此,其他公司很难进入这个市场。就电能供应而言,爱迪生拥有另一个对今天的企业家仍然有价值的品质:他可以从系统的角度思考。1880 年左右,他的专利活动覆盖了从发电到配电和消费的整个价值链,尤其是在为民众提供电灯方面。他拥有发电机、电线、保险丝、电源线、电气绝缘体、电动机、世界著名的灯泡,当然还有其他受美国专利局保护的电气设备。而电表就是这种其他电气设备的一部分。这样的设备对于实现
自古以来,诚实的货物贸易就需要对长度、重量和体积等数量达成一致的计量单位。我们知道,伟大的文化和历史状态都有高度发达的测量系统。令人印象深刻的例子是公元前三千年的例子。公元前一世纪的尼普尔肘尺,在古代美索不达米亚的一座神庙遗址中发现,现保存于伊斯坦布尔考古博物馆,是埃及著名的皇家肘尺,曾被用作建筑的基本量具埃及金字塔的一部分,或者是在希腊奥罗波斯发现的欧洲最古老的日晷,大约公元前 350 年。然而,随着中世纪封建主义的兴起,高级计量文化逐渐消失,因此大约300年前,德国就有50多种不同的质量标准和30多种不同的长度标准。这使得贸易变得更加困难,并鼓励滥用和欺诈,直到大约 300 年前,一项发展开始扭转这个计量“巴别塔”。即使在法国大革命期间,法国也发挥了先锋作用
医疗保健是欧洲面临的主要挑战之一,也是几乎所有欧盟研发计划的战略基石。在未来几十年,医疗保健仍将是政治和社会经济领域的重中之重,而且由于人口变化和成本增加,其重要性将进一步增强。世界卫生组织 (WHO)、欧洲政策推动者和前瞻性研究已强调了这一点,并通过研究和技术开发做出了巨大努力。总体目标是提供早期的患者特异性诊断并选择最佳的个体治疗,从而使医疗保健系统更加高效。这种方法基于这样的认识:个体的生物倾向以及生活方式和环境因素都会影响个人健康。由此,分层或个性化医疗的新概念应运而生。现代医学在很大程度上依赖于物理测量和生化分析技术,需要物理和生物医学科学之间的跨学科互动来推动医疗保健的发展。在过去的几十年里,欧洲建立了医学物理学、生物医学工程或生物信息学等新学科,并拥有强大的研究基础。尤其是在德国,医疗技术行业和学术界一直高度创新和活跃,为全球日益增长的医疗保健行业奠定了基础。计量学在这一背景下发挥着关键作用。精确的测量方法、可靠的质量保证和可比数据是现代医学的基础,用于确定多参数测量。这些信息用于在护理周期的不同阶段(即预防、诊断、治疗和随访期间)做出针对患者的决策。
医疗保健是欧洲面临的主要挑战之一,也是几乎所有欧盟研发计划的战略基石。在未来几十年,医疗保健仍将是政治和社会经济领域的重中之重,而且由于人口变化和成本增加,其重要性将进一步增强。世界卫生组织 (WHO)、欧洲政策推动者和前瞻性研究已强调了这一点,并通过研究和技术开发做出了巨大努力。总体目标是提供早期的患者特异性诊断并选择最佳的个体治疗,从而使医疗保健系统更加高效。这种方法基于这样的认识:个体的生物倾向以及生活方式和环境因素都会影响个人健康。由此,分层或个性化医疗的新概念应运而生。现代医学在很大程度上依赖于物理测量和生化分析技术,需要物理和生物医学科学之间的跨学科互动来推动医疗保健的发展。在过去的几十年里,欧洲建立了医学物理学、生物医学工程或生物信息学等新学科,并拥有强大的研究基础。尤其是在德国,医疗技术行业和学术部门一直高度创新和活跃,为全球日益增长的医疗保健行业奠定了基础。计量学在医疗技术行业中发挥着关键作用
人工智能 (AI) 流程的日益广泛使用正在彻底改变(测量)数据创造价值的方式,开辟全新的业务领域,并改变生活和经济的几乎所有领域。在智能家居和智能城市中,智能仪表和控制器可实现以需求为中心的控制、能源和供水的高效计费以及网络利用率的优化。预测性维护,即h.在工业 4.0 中,使用 AI 进行预测性维护可减少数倍的生产停机时间和维护成本。在医疗保健领域也是如此,人工智能支持的诊断和治疗计划可以改善患者的治疗,从而显着减少医疗系统的停机时间和可避免的负担。广泛使用的测量技术与人工智能流程的结合创造了巨大的经济和社会附加值。由于工业和民用领域几乎所有流程的逐步数字化以及相关数据可用性的不断增加,人工智能关键技术的进步成为可能。数字化和人工智能的日益广泛使用都为市场创造了新的潜力,并从根本上重塑了产品和服务的处理方式。为了发挥AI应用在数字化领域的优势
需要在真空中产生原子束并理解定向量子化,即空间中原子磁矩的排列以及这种排列的有针对性的改变。这一领域的先驱是奥托·斯特恩 (Otto Stern),他是法兰克福大学和汉堡大学的教授(自 1923 年起)[2]。实际上,每个物理学家都会遇到与沃尔特·格拉赫(Walter Gerlach)在《原子物理学导论》中一起进行的“斯特恩-格拉赫实验”[2]。这个实验的解释今天尚未完成,因为它涉及物理测量过程的基本问题 [3, 4] 。实验结果一致得出,原子在外磁场中的磁矩μ不呈现任意方向,而仅呈现一定的值。在不均匀磁场中具有磁矩 µ 的原子上的力也呈现离散值。在一次历史实验中,斯特恩和格拉赫观察到银原子束在通过不均匀磁场进行状态选择后,空间分裂成两个部分光束。Isidor Isaac Rabi,用今天的话来说,是汉堡斯特恩研究所的“博士后”,他扩展了测量装置,包括一个电磁波可以辐射到原子上的相互作用区域,以及第二个区域磁性
近年来,几乎没有任何其他技术领域能像相对年轻的跨学科领域量子技术那样受到如此多的关注。对量子物理基础的研究是上世纪最伟大的成功故事之一。与广义相对论一起,量子物理研究极大地改变了我们对自然基本定律的理解。量子力学和相对论定律现已被充分验证为正确的,但它们与我们的日常经验有很大不同,甚至似乎相互矛盾。即使量子世界的这些独特方面很难向普通受众传达,但它们现在(常常被忽视)构成了我们经济中许多关键技术的基础。例子包括作为现代计算机和信息技术基础的半导体技术、激光技术和基于 LED 技术或磁共振成像 (MRI) 的现代照明元件作为不可或缺的医学成像程序。这个成功故事通常被描述为第一次量子革命。在这里,固体、激光系统及其基于微观物理行为的量子物理学发挥着重要作用。此外,量子光学和量子物理学的重大进展最近为未来量子技术开辟了全新的视角。这些成功很大程度上基于这样一个事实:我们现在已经学会了识别光的内部和外部自由度以及