折纸是日本传统的折纸艺术,它被创造性地应用于机械工程领域,为机械设计和功能力学带来了革命性的变革。折纸工程通常被称为“折纸工程”,这是一个工程领域,利用折叠原理来制造轻巧紧凑的结构和机制,既灵活又坚固。折纸是机械工程中与可展开结构相关的最重要应用之一。例如,NASA 使用折纸设计可折叠太阳能电池板、天线或其他太空组件,这些组件在发射时必须紧凑,并可在太空中完全展开。这种设计最大限度地减少了空间和重量限制。*Miura 折叠* 是一种折纸图案,通常用于将大面积的表面折叠成紧凑的体积。因此,它被用于新的太空探索技术。
图1:通过定制固-固材料实现的功能材料和结构。(a)将预沉积的平面形式从基底上释放后,由于良好粘附的层材料界面失配而导致的自卷起复合膜[1]。(b)通过控制其在基底上的键合位置和/或施加到基底上的预应变的释放路径,弹出具有多样空间形貌的介观结构[2]。(c)通过定位晶胞和/或控制其界面连接,表现出超大范围杨氏模量和泊松比的异质结构平面结构[3]。(d)通过在Miura(M)和蛋盒(E)模式下定制晶胞,实现具有可编程变形模型和力学性能的混合折纸[4]。(e)通过软基质中的硬颗粒旋转实现的机械膨胀结构[5]。(f)通过平板电脑在界面上的滑动机制实现的坚韧夹层玻璃[6]。
2024年1月31日的16-848的参考文献我们谈到了许多分类法。这是幻灯片中提到的。也很有趣。第一个参考是纳皮尔的作品,他优雅地描述了权力和精确的掌握之间的差异。Napier,John R.“人类手的前运动运动。”骨骼和关节手术杂志。英国第38卷,第38页。4(1956):902-913。 然后,我们查看了从机械师grasps获得的Cutkosky分类法。 请注意,目标是开发一个专家系统,以确定掌握需求的选择:Cutkosky MR。在掌握选择,掌握模型和用于制造任务的手的设计。 机器人技术和自动化,IEEE交易。 1989 Jun; 5(3):269-79。 这张照片显示了显示联系人的图片(以及这些可能是我们需要的所有掌握的评论!) Kamakura N,Matsuo M,Ishii H,Mitsuboshi F,Miura Y. 正常手中静态预性的模式。 美国职业治疗杂志。 1980年7月1日; 34(7):437-45。http://ajot.aota.org/article.aspx?articleId=1889836我们以前在班级早些时候见过这个。 抓握部分“预性模式”始于PDF的第265页。 kapandji ia。 关节的生理学:上肢,第1卷 Elsevier健康科学; 1987。http://graphics.cs.cmu.edu/nsp/course/16899-s16/papers/kapandji.pdf这是当今幻灯片的一些其他参考:Iberall,Thea,Thea。 “人类的预性和灵巧的机器人手。”4(1956):902-913。然后,我们查看了从机械师grasps获得的Cutkosky分类法。请注意,目标是开发一个专家系统,以确定掌握需求的选择:Cutkosky MR。在掌握选择,掌握模型和用于制造任务的手的设计。机器人技术和自动化,IEEE交易。1989 Jun; 5(3):269-79。 这张照片显示了显示联系人的图片(以及这些可能是我们需要的所有掌握的评论!) Kamakura N,Matsuo M,Ishii H,Mitsuboshi F,Miura Y. 正常手中静态预性的模式。 美国职业治疗杂志。 1980年7月1日; 34(7):437-45。http://ajot.aota.org/article.aspx?articleId=1889836我们以前在班级早些时候见过这个。 抓握部分“预性模式”始于PDF的第265页。 kapandji ia。 关节的生理学:上肢,第1卷 Elsevier健康科学; 1987。http://graphics.cs.cmu.edu/nsp/course/16899-s16/papers/kapandji.pdf这是当今幻灯片的一些其他参考:Iberall,Thea,Thea。 “人类的预性和灵巧的机器人手。”1989 Jun; 5(3):269-79。这张照片显示了显示联系人的图片(以及这些可能是我们需要的所有掌握的评论!)Kamakura N,Matsuo M,Ishii H,Mitsuboshi F,Miura Y.正常手中静态预性的模式。美国职业治疗杂志。1980年7月1日; 34(7):437-45。http://ajot.aota.org/article.aspx?articleId=1889836我们以前在班级早些时候见过这个。抓握部分“预性模式”始于PDF的第265页。kapandji ia。关节的生理学:上肢,第1卷Elsevier健康科学; 1987。http://graphics.cs.cmu.edu/nsp/course/16899-s16/papers/kapandji.pdf这是当今幻灯片的一些其他参考:Iberall,Thea,Thea。“人类的预性和灵巧的机器人手。”国际机器人研究杂志16,第1期。3(1997):285-299。 https://journals.sagepub.com/doi/abs/10.1177/027836499701600302 Thomas Feix, Javier Romero, Heinz-Bodo Schmiedmayer, Aaron M. Dollar, and Danica Kragic, The GRASP Taxonomy of Human Grasp Types, IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2015. http://grasp.xief.net/ http://ieeexplore.ieee.org/document/7243327/3(1997):285-299。 https://journals.sagepub.com/doi/abs/10.1177/027836499701600302 Thomas Feix, Javier Romero, Heinz-Bodo Schmiedmayer, Aaron M. Dollar, and Danica Kragic, The GRASP Taxonomy of Human Grasp Types, IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2015. http://grasp.xief.net/ http://ieeexplore.ieee.org/document/7243327/
Motoyasu Adachi 1 , Kenichi Asano 2 , Thomas Busch 3 , Tianben Ding 4 , Evan Economo 3 , Hidenori Endo 5 , Ryosuke Enoki 6 ,7 , Ritsuko Fujii 8 , 9 , Katsumasa Fujita 10 , 11 , 12 , Kyoko Fujita 13 , Naoya Fujita 14 , Takasuke Fukuhara 15,Josephine Galipon 16,17,18,Hiroshi Harada 19,Yoshie Harada 20,21,22,Takeshi Hayakawa 23,Shinjiro Hino 24,Eishu Hirata 25,26,Tasuku Honjo 27 ,33,Yuichi Iino 34,Hiroshi Ikeda 35,Koji Ikeda 36,Yuji Ikegaya 37、38、39,Daichi Inoue 40,Tsuyoshi Inoue 41,Masaru Ishii Ishii 42、42、43、43、43、44,Shoji Ishizaka 45 45,45,izakakiizakiizakiizakiizakiizakiizakiizakiiza 45,45,akihito 45 Kimitsune Ishizaki 48,Terumasa Ito 49,Kenji Kabashima 50,Takaaki Kajita 51,52,53,Azusa Kamikouchi 54,Hiroshi Kanno 4,55,Hitoshi Kasai 56,Satoshi Kasai 57 Kikuchi 60,Yasutaka Kitahama 4,Koichi Kobayashi 61,Satoshi Kodera 62,Tamiki Komatsuzaki 63,64,65,Hidetoshi Kono 1,66,Hidetoshi Kono 1,66,Tsuyoshi Konuma 67,Yassei Konuma 67,Yassei Kudo 68,daiSuke Kumike Kumike Kumuke 69, Shoen Kume 70, Erina Kuranaga 71,72, Fabio Lisi 4, Kiminori Maeda 73, Kazuhiro Maeshima 74,75, Kanetaka M. Maki 76, Hiroyuki Matsumura 4, Takeo Minamikawa 77, Emi Minamitani 47,78, Yoshiko Miura 79, Kyoko Miura 80, Norikazu Mizuochi 81,82,83, Masayoshi Mizutani 84, Hiroki Nagashima 73, Ryoichi Nagatomi 85,86, Kuniyasu Niizuma 55,87,88, Masako Nishikawa 89, Emi Nishimura 90,91, Norihiko Nishizawa 92, Hiroaki Norimoto 54,61, Osamu Nureki 34, Fumiaki Obata 19,93, Shizue Ohsawa 54, Misato Ohtani 94, Yoshikazu Ohya 94, Kimihiko Oishi 95, Mariko Okada 20, Taku Okazaki 96, Satoshi Omura 97, Yuriko Osakabe 70, Tsuyoshi Osawa 98,Yukitoshi Otani 99,Walker Peterson 4,
TB1:光电子学 I 主席:S.-J. Jee(信息通信大学) S. Yoshida(东京理工大学) 1. 独特的白光 LED 封装系统 A. Okuno、Y. Miyawaki、N. Oyama,Sanyu Rec / 日本 2. 将大镜子组装到大行程执行器上的窄间距光开关阵列 K. Miura、T. Numazawa、K. Kawase、Y. Hirata,住友电气工业 / 日本 3. 光纤到波导的被动对准技术 B. Choi、MS. Lee,信息通信大学,J. Choi、HI. Lee、CS. Park, Phoco / 韩国 4. 光电板分离接地/电源平面辐射发射分析 H. Kikuchi,超级先进电子技术协会,T. Mori,NTT Advanced Technology,O. Ibaragi,超级先进电子技术协会 / 日本
用于月球开拓者任务的月球热测绘仪。 NE Bowles 1 (neil.bowles@physics.ox.ac.uk)、BL Ehlmann 2,3、RL Klima 4、D. Blaney 3、S. Calcutt 1、J. Dickson 2、KL Donaldson Hanna 5,1、CS Edwards 6、R. Evans 1、R. Green 3、W. Frazier 3、R. Greenberger 2、MA House 7、C. Howe 8、J. Miura 2、C. Pieters 9、M. Sampson 10、R. Schindhelm 10、E. Scheller 2、C. Seybold 3、DR Thompson 3、J. Troeltzsch 10、TJ Warren 1、K. Shirley 1 和 J. Weinberg 10。 1 英国牛津大学物理系、2 加州理工学院,美国加利福尼亚州帕萨迪纳市、3 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳市、4 约翰霍普金斯应用物理实验室,美国马里兰州劳雷尔市、5 中佛罗里达大学物理系,美国佛罗里达州奥兰多市、6 北亚利桑那大学,美国亚利桑那州弗拉格斯塔夫市、7 帕萨迪纳城市学院,美国加利福尼亚州帕萨迪纳市、8 STFC RAL 空间公司,英国迪德科特市、9 布朗大学,美国罗德岛州普罗维登斯市、10 Ball Aerospace & Technologies Corporation,美国科罗拉多州博尔德市。
Harnad,S。(1990) Kodansha。 3。Matsubara,J。和Kawamura,H。(2019年)。 , 240–246。 McCarthy, J., & Hayes, P. (1969). 从人工智能的角度看一些哲学问题。收录于 B. Meltzer 和 D. Michie (编),机器智能,4 (第 463–502 页)。英国爱丁堡:爱丁堡大学出版社。 (McCarthy, J. Hayes, P. Miura (译) (1990). 人工智能为什么需要哲学?框架问题的起源和发展。哲学书房) Searle, J. (1980). 思想、大脑和程序。行为与脑科学,3,417–457。 Shanahan, M. (1997). 解决框架问题。马萨诸塞州剑桥:麻省理工学院出版社。 Silver, D., Huang, A., Maddison, CJ、Guez、A.、Sifre、L.、van den Driessche、G.、...... Hassabis、D. (2016)。利用深度神经网络和树搜索掌握围棋游戏。《自然》,529,445–446。Watanabe、A. 和 Yasuki、K. (2007)。Bonanza 与游戏大脑:最强的将棋软件会超越人类吗?角川书店 Yamamoto、K. (2017)。人工智能是如何超越大师的? ─最强将棋AI开发者Ponanza教授
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816- 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。 Genome Res.,24,1012 — 1019。3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、lzu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017):Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因的小鼠的稳健方法。 Genome Biol., 18, 1 — 15。4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑
Robotics Survey Pieter Abbeel, David Abbink, Farshid Alambeigi, Farshad Arvin, Nikolay Atanasov, Ruzena Bajcsy, Philip Beesley, Tapomayukh Bhattacharjee, Jeannette Bohg, David J. Cappelleri, Qifeng Chen, I-Ming Chen, Jackie Cheng, Cynthia Chem, Chemo, Steve Chryso Collins, David Correa, Brandon DeHart, Katie Driggs-Campbell, Nima Fazeli, Animesh Garg, Maged Ghoneima, Tobias Haschke, Kris Hauser, David Held, Yue Hu, Josie Hughes, Soo Jeon, Dimitrios Kanoulas, Jonathan Kelly, Oliver Kroemer, Changlio Liu, Maud, Martin, and Sajum. buro Matunaga, Satoshi Miura, Norrima Mokhtar, Elena De Momi, Christopher Nehaniv, Christopher Nielsen, Ryuma Niyama, Allison Okamura, Necmiye Ozay, Jamie Paik, Frank Park, Karthik Ramani, Carolyn Ren, Jan Rosell, Jee-Hwan Ryu, Tim Salcudean, Oliver Scheider, Peter Sommons, Alva Schoen, Stone ne, Michael Tolley, Tsu-Chin Tsao, Michiel van de Panne, Andy Weightman, Alexander Wong, Helge Wurdemann, Rong Xiong, Chao Xu, Geng Yang, Junzhi Yu, Wenzhen Yuan, Fu Zhang, Yuke Zhu
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816– 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。Genome Res., 24, 1012–1019。 3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、Izu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017): Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因小鼠的稳健方法。Genome Biol.,18,1-15。 4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑