在2024年,我们建立了“ 2030年愿景的故事”。这是我们通过克服内部和外部面临的强烈变化,同时最大程度地发挥我们的优势,这是我们将要实现2030愿景的途径。In line with this Story, we have indeed made investments to maximize our strengths, such as the acquisition of Orchard Therapeutics which has hematopoietic stem cell gene therapy technology platform, the construction of the HB7 Building, a new biopharmaceutical active pharmaceutical ingredients (API) manufacturing building at the Takasaki Plant, and the start of construction of a biologics API manufacturing plant in North Carolina, USA.此外,我们可以保持全球战略产品的稳定增长。此外,Kyowa Kirin在重组我们的Apac地区业务和研发结构方面做出了一些重要的管理决定。我们仍然致力于以坚定的决心前进,以确保切实的结果。
2。 Miyamoto Kentaro等人的研究(Tokyo University,Tokyo University的生理学,生理学)对额压皮质的可逆沉默选择性地损害了元认知法官的主要经验Kentaro Miyamoto,Rieko Setsuie,Takahiro Osada,Yasushi Miyashita Neuron,97,980-989.e6(2018)http://www.ncbi.nlm.nlm.nlm.nlm.nih.gov/poubmed/poubmed/29395959595959116-
Patrice E Carbonneau 1、Stephen J Dugdale 3、Toby P Breckon 2、James T Dietrich 4、Mark A Fonstad 5、Hitoshi Miyamoto 6 和 Amy S Woodget 7
Patrice E Carbonneau 1、Stephen J Dugdale 3、Toby P Breckon 2、James T Dietrich 4、Mark A Fonstad 5、Hitoshi Miyamoto 6 和 Amy S Woodget 7
Patrice E Carbonneau 1、Stephen J Dugdale 3、Toby P Breckon 2、James T Dietrich 4、Mark A Fonstad 5、Hitoshi Miyamoto 6 和 Amy S Woodget 7
【主要发表论文】 [1] T. Furuhara,Y.-J. Zhang,M. Sato,G. Mimamoto,M. Enoki,H. Ohtani,T. Uesugi,H. Numakura:“高强度钢的亚晶格合金设计-间隙和替代溶质纳米级聚集的应用-”,Scripta Materialia,223(2023),115063 [2] T. Furuhara,Y.-J. Zhang,G. Miyamoto:“转变界面在先进高强度钢设计中的作用”,IOP会议系列:材料科学与工程,580(2019),012005。 [3] X.-G.张,G. Miyamoto,Y. Toji,S. Nambu,T. Koseki,T. Furuhara:“Fe-2Mn-1.5Si-0.3C合金中马氏体回复奥氏体的取向”,材料学报,144(2018),601-612。
SSY1 血液系统恶性肿瘤基因组医学的期望与挑战 演讲者:片冈圭介、福岛健太郎 演讲者:宫本敏宏、加藤基宏 主席:井筒浩二、前田贵宏(大塚制药株式会社)
今天的会议计划最多90分钟。Miyamoto将进行演讲,我们将向您提出问题。请从我们的IR网站下载演示材料。同时解释将通过Zoom获得。如果您想通过日语翻译收听Gaspar先生的演讲,请从屏幕底部中心的“解释”按钮中选择日语。,如果您想收听日语中宫本的英文翻译版本,请选择英语。在问答环节期间,由于系统规格,如果选择日语,则可能无法用英语提出问题。请确保用日语提出您的问题。如果您不需要解释,请使用原始语音的默认设置。在原始设置中,您可以用英语直接向Gaspar先生提出问题。现在,请给我。
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。