[1] Ryan S. Baker。2024。大数据和教育(第8版)。宾夕法尼亚州费城宾夕法尼亚大学。 [2] Ryan S. Baker和Aaron Hawn。2022。教育算法偏见。国际人工智能杂志教育杂志(2022),1-41。[3] Solon Barocas,Andrew D Selbst和Manish Raghavan。2020。反事实解释和主要原因背后的隐藏假设。在2020年公平,问责制和透明度会议的会议记录中。80–89。[4] Alex J Bowers和Xiaoliang Zhou。2019。曲线下的接收器操作特征(ROC)区域(AUC):一种评估教育结果预测指标准确性的诊断措施。受风险的学生教育杂志(JESPAR)24,1(2019),20-46。[5] Oscar Blessed Deho,Lin Liu,Jiuyong Li,Jixue Liu,Chen Zhan和Srecko Joksimovic。2024。过去!=未来:评估数据集漂移对学习分析模型的公平性的影响。IEEE学习技术交易(2024)。[6] Olga V Demler,Michael J Pencina和Ralph B D'Agostino Sr. 2012。滥用DELONG测试以比较嵌套模型的AUC。医学中的统计数据31,23(2012),2577–2587。[7] Batya Friedman和Helen Nissenbaum。1996。计算机系统中的偏差。信息系统(TOIS)的ACM交易14,3(1996),330–347。[8]乔什·加德纳,克里斯托弗·布鲁克斯和瑞安·贝克。2019。225–234。通过切片分析评估预测学生模型的公平性。在第9届学习分析与知识国际会议论文集。[9]LászlóA Jeni,Jeffrey F Cohn和Fernando de la Torre。2013。面对不平衡的数据:使用性能指标的建议。在2013年,俄亥俄州情感计算和智能互动会议上。IEEE,245–251。 [10] Weijie Jiang和Zachary a Pardos。 2021。 在学生等级预测中迈向公平和算法公平。 在2021年AAAI/ACM关于AI,伦理和社会的会议上。 608–617。 [11]RenéFKizilcec和Hansol Lee。 2022。 教育算法公平。 在教育中人工智能的伦理学中。 Routledge,174–202。 [12]JesúsFSalgado。 2018。 将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。 欧洲心理学杂志适用于法律环境10,1(2018),35-47。 [13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。 2021。 在自动教育论坛帖子中评估算法公平性。 教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。 Springer,381–394。 2024。 2023。 2018。IEEE,245–251。[10] Weijie Jiang和Zachary a Pardos。2021。在学生等级预测中迈向公平和算法公平。在2021年AAAI/ACM关于AI,伦理和社会的会议上。608–617。[11]RenéFKizilcec和Hansol Lee。2022。教育算法公平。在教育中人工智能的伦理学中。Routledge,174–202。[12]JesúsFSalgado。2018。将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。欧洲心理学杂志适用于法律环境10,1(2018),35-47。[13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。2021。在自动教育论坛帖子中评估算法公平性。教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。Springer,381–394。2024。2023。2018。[14]Valdemaršvábensk`Y,MélinaVerger,Maria Mercedes T Rodrigo,Clarence James G Monterozo,Ryan S Baker,Miguel Zenon Nicanor LeriasSaavedra,SébastienLallé和Atsushi Shimada。在预测菲律宾学生的学习成绩的模型中评估算法偏见。在第17届国际教育数据挖掘会议上(EDM 2024)。[15]MélinaVerger,SébastienLallé,FrançoisBouchet和Vanda Luengo。您的模型是“ MADD”吗?一种新型指标,用于评估预测学生模型的算法公平性。在第16届国际教育数据挖掘会议上(EDM 2023)。[16] Sahil Verma和Julia Rubin。公平定义解释了。在国际软件公平研讨会的会议记录中。1-7。[17] Zhen Xu,Joseph Olson,Nicole Pochinki,Zhijian Zheng和Renzhe Yu。2024。上下文很重要,但是如何?课程级别的性能和公平转移的相关性在预测模型转移中。在第14届学习分析和知识会议论文集。713–724。[18] Andres Felipe Zambrano,Jiayi Zhang和Ryan S Baker。2024。在贝叶斯知识追踪和粗心大意探测器上研究算法偏见。在第14届学习分析和知识会议论文集。349–359。
Darko Lugonja、Mladen Jurišić、Ivan Plaščak、Ivana Zbukvić、Danijela Glavica-Tominić、Ivan Krušelj、Dorijan Radočaj* 摘要:本研究分析了智能农业发展与农业食品部门可持续数字化转型 (DT) 之间的联系的重要性。DT 的可持续性取决于许多复杂的组成部分,尤其是信息和通信技术 (ICT) 和经济系统。该领域研究数量的增加表明了其复杂性和相互依赖性。在过去几十年的创新中,ICT、人工智能 (AI) 和物联网 (IoT) 显著影响了人类活动的各个方面。这包括全球发展背景下迅速变化且难以预测的农业部门,表明需要应对这些挑战。DT 的全球趋势涵盖了所有部门,为智能农业对可持续 DT 的贡献开辟了空间,也为我们面临的每个挑战找到了合适的“量身定制的解决方案”。关键词:人工智能 (AI);数字化转型 (DT);信息和通信技术 (ICT);物联网 (IoT);智慧农业 1 引言 物联网 (IoT) 在包括农业在内的所有领域的扩展导致了万物互联 (IoE) 的新概念 [1]。智慧城市和智慧村庄作为一个发展中的概念,要求采取整体和多学科的方法应对包括农业领域在内的所有新技术和新范式的挑战。智慧城市和/或农村社区在可持续数字化转型 (DT) 发展方面的趋势表明了发展的重要性,也表明了系统与基础设施之间联系的影响。Håkansson [2] 指出,在智慧城市发展中,系统、“量身定制”和可持续地应用信息和通信技术 (ICT) 非常重要,同时要牢记所有利益相关者的重要性和期望,以及他们的需求。O'Grady 等人 [3] 强调了协调所有技术方面的重要性,也强调了它们之间的进一步联系、适当应用和进一步发展的重要性。持续地考虑到变革管理的各个方面,同时也考虑到挑战的复杂性,重点关注农业和DT领域的创新技术贡献,并展示智能农业等新现象的影响。