别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
环状二核苷酸(CDNS)是干扰素基因(STING)途径激动剂的一种刺激剂,已显示出令人鼓舞的结果,可引起针对癌症和病毒感染的免疫反应。然而,常规CDN的次优型药物样特性,包括其短体内半衰期和细胞渗透性差,会损害其治疗功效。在这项研究中,我们开发了一种锰 - 硅纳米平台(MNO X @HMSN),从而通过与Mn 2+协同作用来增强CDN的佐剂效应,以供癌症和SARS-COV-2疫苗接种。MNO X @HMSN具有大室子孔与CDN和肽/蛋白质抗原有效共同载体。mno X @HMSN(CDA)放大了刺激途径的激活,并增强了I型干扰素和其他促炎细胞因子的产生
我们还要感谢艾伯塔省的梅蒂斯国家,包括他们的健康总监里根·巴特尔(Reagan Bartel)及其在艾伯塔大学(University of Alberta)的研究伙伴,包括玛丽亚·奥斯皮纳(Maria Ospina)博士,分享了他们共同开发的调查工具的草稿,以及Shannon MacDonald博士,她在Covid-9疫苗上分享了来自Antiaral-eyle-ely-ele-eplevel Project的COVID-9疫苗的草稿。这要确保我们可以迅速进行这项研究,这是由于Covid-19疫苗在整个加拿大推出的,这是需要的。我们还要感谢MNO领导人,参议员和工作人员,他们审查了调查以确定安大略省最相关的是什么以及如何最好地与公民建立联系。最后,我们要感谢加拿大土著服务为这项研究提供资金以及MNO的实物资金。这是一项社区努力,为正在进行的研究奠定了基础,以使MNO公民受益。我们从该项目中收集的信息已经被用来告知MNO疫苗通信,例如#Métisvaccination活动。
提供非地面移动服务的移动网络运营商 (MNO) 有机会提高用户参与度、实现新的物联网和企业服务或保护关键链路。目前,MNO 创造经济和社会价值的能力受到其网络覆盖范围的限制。卫星直连设备服务的出现将使移动服务真正无处不在。卫星直连设备服务仍处于起步阶段,但其功能正在迅速发展。MNO 需要迅速采取行动,实施卫星直连设备服务战略,以区别于竞争对手,并抓住这一机会,未来 10 年,该机会将累计价值 931 亿美元。
过去几年,承诺在 2050 年或之前实现净零排放目标的移动网络运营商 (MNO) 数量显著增加。降低功耗是 MNO 实现这些目标并降低运营费用的关键。为了优化能源消耗,MNO 必须详细了解能源消耗的地点和时间,以及哪些因素影响了这种消耗。因此,准确的计量系统是确保正确监测、测量和优化能源消耗的先决条件。它将允许所有参与移动网络部署和运营的参与者(即 MNO 和塔台公司)开发精确的优化流程、预测维护并远程控制网络,从而减少人工干预。简而言之,应该在 MNO 和网络设备供应商(包括制造商和供应商)之间建立一个接口。该接口应包括有价值的功能和机制,以便将测量数据安全地传输到 MNO 站点,使他们能够分析数据并得出可负担的改进措施或解决方案,这些措施或解决方案可以由 MNO 自己实施或与制造商和/或供应商合作实施。虽然本白皮书主要关注基站 (BS) 站点,该站点被认为是移动网络中耗能最多的部分,但其见解和建议也适用于移动网络的其余部分,包括回程、核心和网络功能虚拟化 (NFV)。本白皮书中以通用方式使用术语“计量”,不仅指传感,还指收集、传输和使用所获得信息以更好地管理和改进网络所需的基础设施。这包括一种方法,即如何使用不同的通信通道、协议和接口将信息从测量站点传输到中心点,以便能够执行操作或分发有关网络状态的信息。有了这些信息,就可以规划网络的发展,以降低能耗并提高网络效率。本白皮书介绍了移动网络不同部分计量的目的,以及借助智能设施、可再生能源使用和管理、新运营模式、分解和虚拟化网络等多种用例可以实现的优势。对计量要求进行了分析,考虑了需要监控的方面,包括能源消耗、环境因素、站点安全等,以及如何在 BS、站点设施、核心网络和虚拟环境中实施计量。要节省能源,最重要的测量量是能耗、电流、和电压。应使每个 BS 设备以及技术站点设备(BS 站点)都能够通过计量来测量这些参数。由于不同能耗规模的各种设备在 BS 站点内交互工作,因此应确定和协调功率计的精度等级。因此,建议遵循既定的国际标准来制定测量原则以及测量精度。
当前的研究与开发:通过适当调整竞争相的体积分数,我们实现了创纪录的巨大磁阻值(在 90 kOe 外部磁场中约为 10 15 %)。之前世界上任何地方已知的 MR% 约为 10 7 %),以及半掺杂 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 锰氧化物化合物中的超尖锐亚磁转变 [NPG Asia Materials (IF: 10.76), 10 (2018) 923]。我们仅通过调整 PLD 制备的氧化物外延 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 薄膜中的应变(应变工程)就增强了磁阻 [J. Magn. Magn. Mater. 503 (2020) 166627]。开发了采用PLD在商用热氧化Si衬底上生长优质半金属La 0.7 Sr 0.3 MnO 3 超薄膜的“两步”技术,并观察到跨晶界的自旋极化传输 [J. Magn. Magn. Mater. 527 (2021) 167771]。制备了(Sm 1-y Gd y ) 0.55 Sr 0.45 MnO 3 (y = 0.5 和 0.7)化合物,并表明晶界处的自旋极化隧穿(SPT)传输机制对化合物低场磁阻的增强起着至关重要的作用 [J.Phys: Condens. Matter 33 (2021) 305601]。报道了纳米晶 (La 0.4 Y 0.6 ) 0.7 Ca 0.3 MnO 3 化合物中由粒径驱动的非格里菲斯相向格里菲斯相的改性以及磁阻的大幅增强 [J. Alloys & Compound 745 (2018) 753]。制备了铁磁性 (La 0.67 Sr 0.33 MnO 3 ) - 电荷有序 (Pr 0.67 Ca 0.33 MnO 3 )、核壳纳米结构,并在更宽的温度范围内观察到了较大的磁热熵变值 (-∆SM ) [J. Magn. Magn. Mater. 436 (2017) 97]。在室温附近观察到了 La 0.83 Sr 0.17 MnO 3 化合物中显著较大的磁热效应,可视为磁制冷材料 [Physica B 545 (2018) 438]。我们在制备的 BiGdO 3 化合物中展示了低温下的巨磁热效应(∆SM = 25 J kg -1 K -1 & ∆T= 14.8K),并解释了其由于短程磁关联的存在而产生的成因 [J. Alloys and Compounds 846 (2020), 156221]。我们利用磁热效应构建了所制备的单晶 Sm 0.50 Ca 0.25 Sr 0.25 MnO 3 化合物的复磁相图 [J. Magn. Magn. Mater. 497 (2020) 166066]。对采用移动溶剂浮区炉制备的单晶 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 化合物的磁相变进行了实空间成像,并观察到了亚微米长度尺度上的 AFM-FM 相的存在 [J.Phys: Condens. Matter 33(2021) 235402]。我们已经证明了核心和表面自旋之间的短程磁相互作用在纳米晶掺杂锰氧化物中的交换偏置和记忆效应中的主导作用 [J. Alloys and Compounds 870 (2021), 159465]。与通常使用的磁化数据相反,利用反常霍尔效应研究了 skyrmion 载体材料 Co 3.6 Fe 4.4 Zn 8 Mn 4 的临界行为和相图。这为使用反常霍尔效应研究 skyrmion 载体和其他薄膜多层、介观器件等中的临界现象开辟了新方向。这对 skyrmion 载体材料的开发和未来 skyrmionic 存储器件的开发大有裨益 [J. of Alloys and Compounds 960 (2023) 170274]。
未经审计 2023 2024 (千) Q1 Q2 Q3 Q4 Q1 Q2 Q3 变化 % 变化 移动接入 (1) 44.363 44.591 45.021 45.072 45.180 45.610 45.865 845 1,9% 移动接入(不包括第三方 MNO 接入) n/an/an/an/a 33.731 34.050 34.345 n/an/a 为过渡而持有的第三方 MNO 接入 n/an/an/an/a 11.449 11.560 11.521 n/an/a 预付费 (1) 15.922 15.791 15.769 15.527 15.239 15.220 15.188 (581) -3,7%
第五代 (5G) 网络将支持在异构网络 (Het-Net) 系统中运行的物联网 (IoT) 设备的快速出现。这些支持 5G 的 IoT 设备将导致移动网络运营商 (MNO) 需要处理的数据流量激增。与此同时,MNO 正在为范式转变做准备,以在软件定义网络 (SDN) 架构中解耦控制和转发平面。人工智能驱动的自组织网络 (AI-SON) 可以通过提供预测和推荐系统来适应 SDN 架构,以最大限度地降低支持 MNO 基础设施的成本。本文介绍了 5G 和 SDN 中的 AI-SON 框架的审查报告。审查考虑了 AI-SON 框架的动态部署和功能,特别是对于 SDN 支持和应用程序。讨论了框架中的每个模块,以确定其基于 AI-SON 和 SDN 集成环境的相关性。在检查每个框架之后,发现的差距被总结为未来工作的未决问题。
摘要简介:伤口愈合是再生医学中的主要治疗问题。目前的研究旨在使用大鼠脂肪衍生的干细胞(ADSC)和锰纳米颗粒(MNO 2 –NPS)在多氨基酯/明胶型福特蛋白静电传播纳米纤维中研究大鼠的二级烧伤治疗。方法:在合成纳米颗粒和纳米纤维的静电纺丝之后,执行了SEM分析,接触角,机械强度,血液兼容性,孔隙率,肿胀,生物降解性,细胞活力和粘附测定。根据结果,pCl/凝胶/5%MNO 2 -NPS纳米纤维(MN -5%)被确定为最合适的支架。ADSC种子的MN-5%支架被用作烧伤伤口敷料。测量了伤口闭合率,IL-1β和IL-6水平,羟基丙烯和糖胺聚糖含量,并测量了苏氧化含量和曙红,Masson的毛状体和免疫组织化学染色。与对照组相比,纳米纤维)和N+S(ADSCS+PCL/凝胶纳米纤维)组,IL-6和IL-1β水平降低,伤口闭合,糖胺聚糖和羟基丙烯含量的百分比增加了(p <0.05)。此外,在这两组中观察到了最低的α-SMA量,证明了干细胞在降低α-SMA水平并因此预防纤维化的作用。此外,Mn+S组中α-SMA的量低于N+S组的α-SMA量,并且更接近健康的皮肤。根据组织学结果,在MN+S组中观察到了最佳的治疗类型。结论:总而言之,ADSC种子PCL/凝胶/5%MNO 2 -NPS支架在烧伤伤口愈合中表现出相当大的治疗作用。