表现出高比容量(2 A g 1 时 576 C g 1)。Shinde 等人 11 在室温下通过快速化学法生长了 3D Bi 2 O 3,在电流密度为 2 A g 1 时其比容量为 447 C g 1。刘等人 12 设计了缺氧 r-Bi 2 O 3 /石墨烯柔性电极,在 1 mA cm 2 时具有 1137 C g 1 的高比容量。尽管如此,Bi 2 O 3 对于 ASC 仍然存在缺点,例如其本质上较差的电子和离子电导率,充电 - 放电过程中的体积膨胀很大。进一步的研究表明,碳可以作为缓冲层,有效减少形貌变化,保护电极结构。Bi 2 O 3 /C复合材料的简便设计和制备策略仍需继续研究,以调整形貌和电子结构。13 – 16
摘要在这项研究中,使用铜和钴金属离子与苯二羧酸(BDC)合成两个不同的金属有机框架(MOF)作为常见的配体。使用X射线衍射,傅立叶变换红外光谱和扫描电子显微镜 - 能量分散光谱表征制备的MOF。此外,使用循环伏安法,电静脉电荷/放电和电化学阻抗光谱法分析了电化学特性。结构特征表明Co-BDC MOF由三维非均匀胶体组成,CU-BDC MOF具有常规的三维立方体结构,具有良好的结晶结构。Cu-BDC MOF的最大比电容为171 f/g,而Co-BDC MOF在1 A/G的电流密度下显示368 f/g。与Cu-BDC MOF相比,CO-BDC MOF的溶液电阻为0.09Ω。此外,Co-BDC MOF通过在2000年电荷释放循环后保留其容量的85%,表现出更好的循环性能。相比之下,Cu-BDC MOF的稳定性较低,容量仅保留78%。最终,在3 M KOH电解质系统中,Co-BDC MOF表现出优异的特异性电容,较低的电阻和增强的环状稳定性。
金属有机骨架 (MOF) 已成为合成晶体网络的主要形式之一。MOF 可以实现节能和原子经济的自组装,[1] 并且其多样性提供了一个多功能工具箱,具有化学和结构精度,可用于定制材料以实现不同的功能。 [2,3] 关键是利用 MOF 独特且可调节的内部孔环境,其超高孔隙率需要很大的比表面积。 [3] 然而,常见的 MOF 通常以粉末形式收集,这在大多数应用中非常不切实际。 [4] 在追求相干的 MOF 材料时,已经提出了金属有机气凝胶 (MOA),即由具有化学交联基质的 MOF 制成的气凝胶。 [5] 然而,MOA 的制造具有挑战性,因为 MOF 缺乏形成具有足够结构
MOF由于其可调带间隙而成为光催化的有前途的材料,这使它们能够吸收光并产生用于光催化反应所需的电子孔对。带隙,价带(VB)和传导带(CB)之间的能量差,确定了MOF可以吸收的光的波长。通过仔细设计MOF中的有机配体和金属节点,研究人员可以调整带隙以匹配可见光或紫外线的能量。这种可调节性允许MOF有效利用轻能,从而促进反应性物种的产生,例如羟基自由基和超氧化物离子,这对于降解污染物至关重要。在用于光催化应用的各种类型的MOF中,有几种值得注意的MOF,具有适当的带隙用于光催化目的(图1)。首先,UIO型MOF的特征在于它们的稳健性和较大的孔径,在光催化反应中表现出了出色的性能,这是由于它们的高表面积和恶劣条件下的稳定性。mil-type MoF,具有开放金属位点和量身定制的孔结构,也具有增强的光吸收和电荷分离特性,使它们成为各种转化的有效光催化剂。
金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
随着先前框架的结构稳定性和过渡金属-NHC的强相互作用,我们的Zn-MOF平台导致具有各种催化剂的MOF产生。在此,我们通过利用自下而上的方法报告了含有固定的铜和金NHC复合物(Cu-NHC MOF和Au-NHC MOF)的MOF的合成。如图1所示,尽管有各种类型的催化物种,但仍保持了MOF的结构。Because the MOFs constructed from copper and gold NHC ligands exhibited high porosity despite the interpenetrated structure and unique tolerance towards various solvents, such as NMP, DMF, THF, and di- oxane, these MOFs readily catalyze various reactions such as Cu-catalyzed azide-alkyne cycloaddition reaction, Cu- catalyzed multicomponent reaction, and Au催化的Hy-droamination。此外,由于NHC对过渡金属配合物的高配位能力高,8轴承NHC金属配合物的MOF在这些MOF催化的有机反应中表现出低浸出催化活性金属位点到反应混合物中,并且可以使用为高效的异质催化剂。
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。
MOF已被用作抗菌物质,因为它们本质上是无毒的且稳定的。银基MOF(AG-MOF)由于其广泛的有效抗菌特性而被认为是理想的抗菌材料。48此外,将表面活性剂49添加并固定在固体底物上的MOF 50分别稳定了分散的MOF并提高其水性稳定性,从而改善了其抗菌活性。MOF提供了与传统材料有关药物传递应用的有希望的好处,包括精确控制孔径的大小和形状,以及修改组合和结构的能力,以及展示的生物降解性,出色的加载能力,受控药物释放以及提供多样性功能的能力。51
无溶剂合成和加工金属有机骨架 (MOF) 对于将这些材料应用于应用技术至关重要。MOF 薄膜的气相合成特别适合此类应用,但与传统的基于溶液的方法相比具有挑战性。因此,推进和扩大 MOF 薄膜的气相合成势在必行。结晶对苯二甲酸铜 MOF 薄膜通过原子和分子层沉积 (ALD/MLD) 在不同种类的基底上以气相生长。从先驱工作扩展而来,首次清楚地证明了 3D 相的形成,并揭示了该工艺对多种基底的适应性。在 ALD/MLD 工艺的早期阶段观察到定向膜生长,导致表面上取向的 MOF 晶体,当随着 ALD/MLD 循环次数的增加而进行各向同性生长时。值得注意的是,这项研究主要展示了使用具有晶格匹配拓扑的 DMOF-1 单晶作为起始表面,在气相中实现异质外延生长。这种方法为在气相中开发 MOF 超晶格材料提供了一种有吸引力的途径。
利用其互补的碱基对配位,DNA可用于制造纳米和微结构,例如DNA折纸。15类似地,通过在粒子表面上修改DNA获得了有序的MOF组件。16,17通常,由于MOF的无限结构,这些MOF – DNA结合物是非化学计量计的,MOF的结构不适合NPMC组件的精确分子设计或DDSS。金属 - 有机笼(MOC)是具有离散结构的NPMC。与MOF相比,MOC可溶于各种溶剂,并且可以定量修改它们的表面,从而实现了MOC - 有机分子偶联物在分子水平上的精确控制设计。18在结合DNA和MOC中也有可能具有这种结构特征,这对于aque os溶液中NPMC组件或DDSS的精确分子设计有利(图1)。然而,尚未报道DNA和MOC的结合,大概是因为DNA与MOF相比更难与MOF结合,因为DNA的多个协调位点:即使减去一种金属离子,MOC分解了,而MOF被减去,而MOF仍保留其表面的特性。在这项研究中,我们通过合成后修饰实现了DNA与特殊设计的新MOC的化学计量结合。使用MOC修饰DNA可以通过形成双链DNA来实现MOC组件的设计,并显着改善了DNA对人类细胞的功能。由于其水的稳定性和易于性的合成后表面修饰,我们选择了具有三核ZR