与传统的散装材料相比,使用三维(2D)纳米片有三个独特的优势:(1)裸露的表面的高百分比可以使更多不饱和的金属活性位点增强催化活性; (2)纳米厚度将加速质量传输和电子转移; (3)唯一的开放结构使更多的内部原子暴露为可访问的活动位点。20 - 22因此,超薄MOF纳米片可能是理想的模型系统,不仅可以设计为高性能电催化剂,而且在催化,传感器和超级电容器等方面具有许多有希望的应用。19不幸的是,由于固有的各向同性化学键,仅缩小具有3D拓扑结构的MOF的尺寸并不容易,目前很少有关于准备2D MOF纳米片的报道。24 - 26因此,为了控制MOF材料的2D各向异性生长,合成过程必须打破热力学平衡状态,并且必须在引入动力学的可控性。作为最重要的MOF之一,MOF-74(M¼CO,Ni)具有高密度和开放的不饱和配位位点,自2005年报道。27 MOF-74具有带有六边形通道的3D拓扑结构,直径约为11°A; MOF的每个金属原子都与2,5-二羟基甲状腺酸酸分子(DHTA)的羧基和羟基羟基羟基上的氧原子进行了协调。金属原子的第六个配位位点被吸收的来宾分子占据,该分子很容易删除以暴露不饱和的金属位点。28归因于
出色的发光特性,28和相当大的NTE强度。17,29 UIO-66家族是调查最多的MOF之一。30不同形式的金属节点和各种形式的线性羧酸配体构建了大量的UIO-66衍生物,它们具有良好的稳定性,并且可以胜任大多数实用的应用。31此外,在照明下,UIO-66家族通常具有典型的LMCT过程,32适合通过NTE实现发光热增强。作为一种重要的结构调制方法,配体工程已被广泛用于MOF的应用中,包括气体吸附,分离和催化。33,34可以通过在不改变其晶体拓扑的情况下调整MOF中的配体官能团来促进靶向性质,从而为我们提供理想的属性调制设计方法。在此,我们合成了一系列的UIO-66基于EU的MOF(EU-NH 2 -BDC,EU-OH-BDC和EU-NDC),以关联
用于选择性氢化反应的丰富金属催化剂。作为一类独特的多孔分子材料,金属 - 有机框架(MOF),[7]已被探索用于广泛的应用,包括气体存储[8]和分离[8]和[9]传感,[10],[10]以及生物医学成像和癌症治疗。[10–11] MOF特别适合通过摄取其分子可调性,通过大通道进行主动位点访问以及增强的催化剂稳定性来设计可重复使用的多孔单位固体催化剂。[12]因此,MOF催化剂可以结合均匀催化剂的分子可调性和均匀的催化位点,以及异质催化剂的稳定性,易于分离以及可重复使用,以提供有机转化的新类别可持续催化剂的新类别。[13]在某些示例中,MOF允许通过位点隔离来稳定催化活性中心,以设计基于单个金属中心的溶液无接口催化物种。[14]
金属有机框架(MOF)是气体传感的有前途的材料,但通常仅限于一次性检测。杂交策略被证明是在高性能独立的化学疗法中协同部署导电MOF(C MOF)和导电聚合物(C PS)作为两个互补的混合离子电导体。这项工作提出了i)传感器恢复动力学的显着改进,ii)循环稳定性和iii)在室温下的动态范围。基于2,3,6,7,11,11-11-11-11-羟基二羟基二苯乙烯(HHTP)和2,3,6,7,7,11111111111111-11-111-11-111-11-11-111-11-111-111-111-111-11-111-111-111-111-111-11-111-111-111-11-111-111-111-111-111-11-111-111-111-111-11-1111111111111-11-111-111-111-111-111-111111-111--己酮(HITP),带有各种金属nodes(CO))进行了一项全面的机械研究,以通过感应热力学和结合动力学在MOFS和聚合物之间的异质结与聚合物之间的杂孔对齐。发现杂交时C MOF成分的孔富集会导致解吸动力学的选择性增强,从而在室温下显着改善了传感器的恢复,从而可以长期响应保留。该机制得到了关于吸刺 - 分析物相互作用的密度功能理论的进一步支持。还发现,合金C PS和C MOF可以使可容纳的薄膜加工和设备集成,有可能解锁这些混合导体在不同的电子应用中的使用。
这项关于金属有机骨架 (MOF) HUKUST-1 薄膜的研究重点是比较未掺杂的原始状态和通过 TCNQ 渗透 MOF 孔结构进行掺杂的情况。我们已经确定了 HKUST-1 薄膜的温度相关电荷传输 p 型电导率。此外,还详细表征了电导率和电流-电压特性。由于最常见的 MOF 形式,即块状 MOF 粉末,不易进行电气特性研究,因此在本研究中,电气测量是在致密、紧凑的表面锚定金属有机骨架 (SURMOF) 薄膜上进行的。这些单片、明确定义和 (001) 优先取向的 MOF 薄膜是使用准液相外延 (LPE) 在特殊功能化的硅或硼硅酸盐玻璃基板上生长的。在原始 SURMOF 薄膜上,研究了在这些多孔薄膜中加载 TCNQ 的影响。在高度定向的 SURMOF 薄膜中观察到正电荷载流子传导和强烈的电导各向异性,并通过塞贝克系数测量得到证实。范德堡四点霍尔测量为此类多孔和混合有机-无机晶体材料的电行为提供了重要的见解,这使得它们在微电子和光电子设备以及热电应用中具有潜在应用价值。
co 2分离在应对温室效应引起的气候变化方面起着至关重要的作用,并证明天然气和沼气的能源质量。高度必需的CO 2分离技术。膜分离技术在CO 2分离过程中特别有吸引力。但是,交易关系限制了气体分离过程中聚合膜的气体分离效率。因此,有必要准备高性能膜,例如混合基质膜(MMMS)进行CO 2分离。本综述主要集中于制备方法,材料特性和CO 2分离效率,其中包含各种纤维,例如修改的ZIF,MOF和GO,以及新兴的MOF基于MOF的复合材料,2D MOF和2D MXEN。修改后的填充剂与聚合物基质表现出更高的兼容性,从而提高了机械稳定性和MMM的CO 2分离效率。2D材料可以显着提高MMM的CO 2分离效率,这是由于其分层结构和气体传输方式的有效调节。最后,提供了气体分离过程中的未来方向和结论。
有毒污染物(例如重金属和有机化合物)对人类健康产生有害影响,从而引发全球关注。1,2此外,气候变化的行星边界已经超过,并且正在对地球造成不可逆转的损害。3因此,已经引入了几种水纯化和CO 2捕获方法。4,5尽管这些技术既可靠又有效,但由于高能源需求和成本,它们是不可持续的。6因此,开发可持续和环保的技术至关重要。金属 - 有机框架(MOF)是高度多孔纳米结构,其中包括金属离子/簇和有机接头7具有特色特征,例如高孔隙率和表面积,多样性和灵活性。8这些特性使MOF能够在吸附,9气体捕获,10和分离,11以及环境修复方面具有较高的潜力。12个基于锆的MOF,UIO-66和UIO-66-NH 2具有较高的热液稳定性,13对水的应用有益。此外,UIO-66-NH 2中的氨基组允许CO 2吸附属性。14然而,直接应用粉末状MOF(例如由于脆弱和晶体结构引起的可加工性差),存在某些局限
摘要:金属 - 有机框架(MOF)的UIO家族已被广泛研究,因为它们的高稳定性是由它们强大的二级建筑单元所呈现的。这些材料的有效设计和使用需要对它们的热稳定性及其对化学和结构功能的影响有基本的了解。在此,我们提供了UIO-67和功能类似物的固有热行为的详细表征,即UIO-67-NH 2和UIO-67-CH 3。使用原位温度编程的X射线差异,我们发现在加热过程中,在有机接头上的羧酸酯基团的变形导致UIO-67 MOF的负热膨胀(NTE)。这种NTE行为与在MOF红外光谱签名中观察到的丰富而可逆的热变化相关,因为将样品加热到样品激活温度(473 K)。我们发现,与环境或惰性环境相比,在没有氧气的情况下,激活的UIO-67样品显示出更高的热稳定性,温度填充揭示了总体稳定性趋势:UIO-67> UIO-67> UIO-67- CH 3> UIO-67-67-NH 2。在473 K以上的热处理过程中观察到了两个变化的阶段,这与这些材料的无机节点的变形和各向同性NTE行为直接相关。最终,这些结果提供了对UIO-67 MOF的基本热响应行为的实时解释,并为准确解释MOF与宾客分子及其温度依赖性的基础提供了基础。■简介
摘要:金属 - 有机框架(MOF)UIO-66(OSLO-66大学)的超矩形4至6 nm纳米颗粒成功地制备并嵌入到聚合物Pebax 1657中,以制造薄膜纳米纳米含量(TFN)的薄膜(TFN)MEMBRANES,用于CO 2 /N 2 /CO 2 /CO 2 /CH 4分隔。此外,已经证明了使用氨基(-NH 2)和硝基( - 2号)组的配体功能化显着增强了膜的气体分离性能。对于CO 2 /N 2分离,7.5 wt%UIO-66-NH 2纳米颗粒的CO 2渗透率比原始膜(从181到277 GPU)提高了53%。关于CO 2 /N 2的选择性,用5 wt%UIO-66-NO 2纳米颗粒制备的膜在没有MOF的情况下以17%的增量增量(从43.5到51.0)。但是,该膜的CO 2渗透率降至155 GPU。在5 wt%UIO-66-NO 2膜中添加10 wt%ZIF-94颗粒,平均粒径约为45 nm,允许将CO 2固定膜增加到192 GPU,同时保持CA的CO 2 /N 2选择性。51由于MOF与ZIF-94的亲水性性质提供的聚合物基质之间的协同相互作用引起的。在CO 2 /CH 4分离的情况下,7.5 wt%UIO-66-NH 2膜表现出最佳性能,CO 2 Pereance从201增加到245 GPU。关键字:金属 - 有机框架(MOF),Ultrasmall MOF,UIO-66,薄膜纳米复合材料(TFN)膜,气体分离
抽象的水污染已成为一个全球问题。废水的来源主要包括工业和商业领域。为了满足清洁水的指数增加,需要有效的技术来处理废水。已经采用了几种技术,例如氧化还原反应,膜过滤,机械过程,化学处理和吸附技术。但是它们的成本和有效性仍然是一个主要问题。在这项研究中,我们通过使用简单的热液技术合成NICOMN MOF来采用有效的废水处理技术,并使用XRD和SEM来表征其可能的特性。XRD分析证实了NICOMN MOF的成功合成。通过SEM分析给出了有关表面形态和拓扑的足够信息,SEM分析证明是一种纳米多孔结构,具有高表面积有效的污染物中污染物的吸附和氧化催化。此外,观察到MOF之间的高静电吸引力,可能会吸引相对充满电的污染物。结果表明,用于废水处理应用中合成的NICOMN MOF具有很高的潜力。