1 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871,中国 2 北京金羽能源科技有限公司,北京 100095,中国 * 电子邮件:xychuan@pku.edu.cn a 作者对这项工作的贡献相同 收到日期:2020 年 3 月 3 日/接受日期:2020 年 4 月 26 日/发布日期:2020 年 6 月 10 日 水系锌离子电池(ZIB)因其优异的安全性、成本效益和环境友好性而被公认为大规模储能最有希望的候选材料之一。然而,由于合适正极材料的可用性有限,ZIB 的应用受到阻碍。在本工作中,通过模板辅助热分解制备了多孔管状 MoS 2,其中以(NH 4 ) 2 MoS 4 为前驱体,以天然埃洛石为模板。作为一种有前途的锌离子电池正极材料,所制备的 MoS 2 在 0.2 A g -1 时表现出良好的比容量 146.2 mAh g -1 ,并且具有优异的循环性能,800 次循环后容量保持率为 74.0%。此外,所提出的 MoS 2 即使在 1 A g -1 时也表现出良好的倍率性能。这项工作为锌离子电池提供了一种有前途的正极材料,并为其未来在可再生能源存储中的应用开辟了新的可能性。关键词:MoS 2;热分解;埃洛石模板;正极;水系锌离子电池。1. 引言
摘要 — 本文详细研究了机械应变对过渡金属二硫属化物 (TMD) 材料隧道场效应晶体管 (TFET) 的影响。首先,利用密度泛函理论 (DFT) 的第一原理在元广义梯度近似 (MGGA) 下计算机械应变对 MoSe 2 材料参数的影响。通过在非平衡格林函数 (NEGF) 框架中求解自洽 3D 泊松和薛定谔方程,研究了 TMD TFET 的器件性能。结果表明,I ON 和 I OFF 均随单轴拉伸应变而增加,但 I ON / I OFF 比的变化仍然很小。TMD TFET 中这种应变相关性能变化已被用于设计超灵敏应变传感器。该器件对 2% 的应变显示出 3.61 的灵敏度 (ΔI DS / I DS)。由于对应变的高灵敏度,这些结果显示了使用 MoSe 2 TFET 作为柔性应变传感器的潜力。此外,还分析了应变 TFET 的后端电路性能。结果表明,与无应变 TFET 相比,基于受控应变的 10 级反相器链的速度和能效有显著提高。
摘要:范德华 (vdW) 材料的垂直堆叠为二维 (2D) 系统的研究带来了新的自由度。层间耦合强烈影响异质结构的能带结构,从而产生可用于电子和光电子应用的新特性。基于微波显微镜研究,我们报告了门控二硫化钼 (MoS 2 )/二硒化钨 (WSe 2 ) 异质结构器件的定量电成像,这些器件在传输特性中表现出有趣的反双极效应。有趣的是,在源漏电流较大的区域,n 型 MoS 2 中的电子和 p 型 WSe 2 段中的空穴几乎平衡,而异质结构区域的移动电荷则耗尽。局部电导的空间演变可以归因于沿 MoS 2 − 异质结构 − WSe 2 线的横向能带弯曲和耗尽区的形成。我们的工作生动地展示了新传输行为的微观起源,这对于充满活力的范德华异质结研究领域非常重要。关键词:范德华异质结构、微波阻抗显微镜 (MIM)、反双极效应、能带排列、耗尽区
摘要:我们通过使用依赖偏振的超频率拉曼光谱的纯3R和2H堆叠顺序研究了MOS 2中的层间剪切和呼吸声子模式。我们在MOS 2中最多观察到三层剪切分支和四个呼吸分支,厚度为2至13层。呼吸模式显示出两种多型型的拉曼活性行为,但是2H呼吸频率始终比3R呼吸频率高几个波数,这表明2H MOS 2的层间层间层间lattice晶格偶尔略高于3R MOS 2。相比之下,剪切模式拉曼光谱在2H和3R MOS 2中截然不同。虽然最强的剪切模式对应于2H结构中的最高频率分支,但它对应于3R结构中的最低频率分支。3R和2H多型的如此独特和互补的拉曼光谱使我们能够从最高到最低分支中调查MOS 2中的广泛剪切模式。通过结合线性链模型,群体理论,有效的键极化模型和第一原理计算,我们可以考虑实验中的所有主要观察结果。
图1。单层MOS 2的光致发光中的异常功率依赖性。(a)(左列)光致发光区域的空间图像和(右列)在不同入射功率密度下PL的空间光谱曲线的二维图像。这两种类型的图像共享相同的垂直轴。如图所示,入射功率被标记。(b)PL光谱从照明区域的中心提取。(c)PL强度(黑色曲线)和PL区域的大小(红色曲线)具有入射力。(d)位置(具有最大振幅)和PL峰的FWHM作为入射力的函数。(c)和(d)中有白色的两个区域表示两个过渡,从游离激子(Fe)到电子孔等离子体(EHP),从电子孔等离子体(EHP)到电子孔液体(EHL)。
用于电催化水分裂的高级材料对于可再生能源研究至关重要。在这项研究中,我们描述了一个两步反应,以制备由Pt纳米颗粒和MOS 2纳米片组成的氢进化反应(她)的电极。形态和结构的特征是多种技术,包括SEM,TEM,XRD和XPS。详细的电化学特征表明,PT纳米颗粒/MOS 2纳米片/碳纤维电极(2.03 w%pt)在其酸性电解质中表现出极好的催化活性,其超电量为5 mV(Vs.她)。估计相应的Tafel斜率为53.6 mV/dec。稳定性通过长期电势周期和扩展电解确认催化剂的特殊耐用性。â2015 Elsevier Ltd.保留所有权利。