机器人福祉教练已被证明成功地证明了人们的心理健康。为了提供成功的教练,机器人教练应该有能力修复其犯的错误。过去调查机器人错误的工作仅限于游戏或基于任务的一次性和单行内研究。这是一个4阶段设计过程,以设计修复策略,以针对现实世界利益相关者的参与,为机器人纵向福利教练提供教练:1)使用专业的福祉教练设计维修策略; 2)经验丰富的用户(即已经与机器人教练互动)的纵向研究,以调查(1)中定义的维修策略; 3)与研究中的用户一起进行的设计研讨会(2),以收集对机器人教练的维修策略的观点; 4)与心理健康专业人士讨论在(2)和(3)中获得的结果,以反思如何为机器人教练设计维修策略。我们的结果表明,用户对机器人教练的期望与人类教练的期望不同,该教练认为应如何设计维修策略。我们表明,在不同的情况下,不同的维修策略(例如,道歉,解释或同情)是合适的,并且在与机器人教练的纵向互动过程中更喜欢修复策略发生变化。
过渡金属二盐元化(TMDS)的单层表现出许多具有不同结构,对称性和物理特性1-3的晶体相。在二维4中探索这些不同的结构阶段之间的过渡物理学可能会提供一种切换材料特性的方法,这对潜在的应用有影响。由热或化学方法5,6诱导;最近提出,通过静电掺杂对晶体相纯粹的静电控制是一种理论上的可能性,但尚未实现7,8。在这里,我们报告了单层钼二硫代硫醇的六边形和单斜阶段之间静电掺杂驱动的相变的实验证明(Mote 2)。我们发现相变显示了拉曼光谱中的滞后环,并且可以通过增加或降低栅极电压来逆转。我们还将第二谐波生成光谱与极化分辨的拉曼光谱结合在一起,以表明诱导的单斜相保持原始六边形相的晶体取向。此外,这种结构相变于整个样品同时发生。这种结构相变的静电掺杂控制为基于原子薄膜开发相变设备的新可能性开辟了新的可能性。分层TMD中通常研究的晶体形式是最稳定的六边形(2H)相。在这种情况下,如图有趣的是,实验研究报道了另一种分层晶体结构,即单斜(1T')相。1a,每个单层由一层六角形的过渡金属原子组成,并将其夹在两个层的chalcogen原子1之间。与散装形式不同,单层2H TMD成为直接带隙半导体和断裂反转对称性,在布里远区域9,10的角落形成了不等的山谷。这种山谷的自由度,以及在低维度中的强烈激子效应,使该阶段成为二维谷LeTronics和Optoelectronics 11-13的独特平台。在这里,在每个层中,丘脑原子在过渡金属原子周围形成一个八面体配位,沿y轴14的晶格失真(图1b)。与半导体2H相不同,半金属或金属1T'单层TMDS保留反转对称性,预计将表现出非平凡的拓扑状态2,3。2H和1T'相之间过渡的动态控制可以揭示不同晶体结构的竞争,共存和合作,以及不同的物理特性之间的相互作用15。这种控制还导致广泛的设备应用,例如记忆设备,可重新配置的电路和拓扑晶体管在原子上较薄的限制为2,16,17。到目前为止,通过在500°C下的热合成进行了实验报告TMD中的2H到1T'相变(参考5),通过元素取代18和激光照射19。但是,这些相变仅在几层或
摘要 免疫实践咨询委员会建议医护人员 (HCP) 每年接种一次流感疫苗,并建议所有 ≥6 个月的人及时接种推荐的 COVID-19 疫苗。医疗机构向 CDC 的国家医疗保健安全网络 (NHSN) 报告 HCP 的流感和 COVID-19 疫苗接种情况。在 2023 年 1 月至 6 月期间,NHSN 将最新的 COVID-19 疫苗接种定义为在过去 2 个月内接种了二价 COVID-19 mRNA 疫苗剂量或完成了主要系列接种。这项分析描述了 2022-23 年流感季节(2022 年 10 月 1 日至 2023 年 3 月 31 日)期间在急症护理医院和疗养院工作的 HCP 的流感和最新的 COVID-19 疫苗接种覆盖率。急症护理医院的医护人员流感疫苗接种率为 81.0%,养老院医护人员流感疫苗接种率为 47.1%。截至目前,急症护理医院医护人员的 COVID-19 疫苗接种率为 17.2%,养老院医护人员的疫苗接种率为 22.8%。有必要推广循证策略,以提高医护人员的疫苗接种覆盖率。量身定制的策略也可能有助于让所有医护人员接种推荐疫苗,并保护他们及其患者免受可通过疫苗预防的呼吸道疾病的侵害。
磁性和拓扑是冷凝物理物理学的两个主要领域。磁性和拓扑的结合产生了更多新颖的物理效应,这引起了人们强烈的观念和实验性的关注。最近,引入了altermagnetism的概念,其特征是双重性质:真实空间的抗fiferromagnetism和相互空间各向异性自旋极化。Altermagnetism与拓扑的合并可能导致以前未观察到的拓扑阶段的出现和相关的物理效应。在这项研究中,利用融合了Altermagnetism和自旋组对称性的四波段晶格模型,我们会在Altermagnetic Systems中存在I型I型,II II和III型双极化的Weyl semimetals。通过第一原理电子结构计算,我们预测了四个理想的两维型A型双极二极化的Weyl Semimetals Fe 2 WTE 4和Fe 2 Moz 4(Z = S,SE,TE)。更重要的是,我们引入了量子晶体谷霍尔效应,这是在考虑旋转轨道耦合时,在这些材料中的三种现象中可以实现的现象,即Fe 2 WTE 4,Fe 2 MoS 4和Fe 2 Mote 4。此外,这些材料有可能从量子级别的晶体谷霍尔相过渡到应变下的Chern绝缘体相。相反,在自旋轨道耦合下,Fe 2 Mose 4仍然是一个Weyl半准,但仅通过仅拥有一对Weyl点来区分。此外,可以通过调整N´eel载体的方向来操纵Fe 2 WTE 4和Fe 2 Moz 4中的位置,极化和韦尔点的数量。因此,Fe 2 WTE 4和Fe 2 Moz 4作为研究各种Altermagnetic拓扑阶段的独特物理属性的有前途的实验平台。
在稀疏奖励任务中学习有效的策略是加强学习的基本挑战之一。这在多代理环境中变得极为困难,因为对多种代理的同意学习引起了非平稳性问题,并大幅增加了关节状态空间。现有作品试图通过经验共享来实现多代理的合作。但是,从大量共享经验中学习是不具备的,因为在稀疏的奖励任务中只有少数高价值状态,这可能会导致大型多区域系统中的维度诅咒。本文着重于稀疏的多项式合作任务,并提出了一种有效的体验共享方法,即MAST的选修课(MASL),以通过重新获得其他代理商的有价值的经验来促进样本良好的培训。MASL采用了一种基于倒退的选择方法来识别团队奖励的高价值痕迹,基于这些召回痕迹在代理之间生成并共享某些召回痕迹,以激发有效的外观。此外,MASL有选择地考虑来自其他代理商的信息,以应对非平稳性问题,同时为大型代理提供有效的培训。实验结果表明,与最先进的合作任务中的最先进的MARL Al-Al-gorithms相比,MASL显着提高了样本的效率。
迄今为止,可信人工智能文献主要关注与离散人工智能进行有意识交互的用户的信任需求。文献中明显缺少对公众对人工智能信任的严格处理。我们认为,公众对人工智能的不信任源于监管生态系统的不发达,而这种生态系统将保证遍布社会的人工智能的可信度。借鉴结构化理论和机构信任文献,我们提供了一个公众对人工智能的信任模型,该模型与推动可信人工智能工作的模型截然不同。该模型为可信人工智能研究提供了理论支架,强调需要开发一个全面且明显运作的监管生态系统。我们阐述了外部可审计的人工智能文档在此模型中的关键作用以及为确保其有效性而需要开展的工作,并概述了一些将促进公众对人工智能信任的行动。我们讨论了组织内开发 AI 文档的现有努力(既要告知潜在的 AI 组件采用者,又要支持风险和道德审查委员会的审议)是必要但不足以确保 AI 的可信度。我们认为,通过制定 AI 规则和开发执行这些规则的资源,以赢得公众信任的方式对公众负责,最终将使 AI 值得信赖,并融入我们社会的结构中。
简介胶质母细胞瘤 (GBM;世界卫生组织 IV 级胶质瘤) 是成人中最常见、最具侵袭性的原发性恶性脑肿瘤 (1)。尽管进行了最大限度的手术切除,然后进行放化疗和辅助化疗,GBM 仍然普遍致命 (2-4)。GBM 表现出显著的细胞异质性,含有干细胞样 GBM 干细胞 (GSC;也称为脑肿瘤起始细胞),导致治疗耐药性和快速复发 (5-8)。与非干细胞或分化 GBM 细胞 (DGC) 相比,GSC 表达干细胞标志物,在无血清条件下产生球体,并在体内快速形成肿瘤 (9, 10)。体细胞突变导致 GBM 的发生和发展,但精准医疗迄今为止在其治疗中取得的成功有限 (11, 12)。表观遗传改变也可能促进神经胶质瘤的形成,从而提供治疗靶点(13-15)。肿瘤生物学的一个最新进展是将改变的 A-to-I RNA 编辑归因于多种致瘤途径(16,17)。在哺乳动物中,RNA 编辑会改变表达 RNA 的转录序列,而不会影响 DNA 序列(18-20)。A-to-I RNA 编辑由 ADAR(作用于 RNA 的腺苷脱氨酶)催化,是哺乳动物中最常见的 RNA 编辑事件,超过 85% 的 RNA 可能在编码和/或非编码区域进行编辑(19,21)。三种酶在 A-to-I RNA 编辑中起着重要作用。
简介胶质母细胞瘤 (GBM;世界卫生组织 IV 级胶质瘤) 是成人中最常见、最具侵袭性的原发性恶性脑肿瘤 (1)。尽管进行了最大限度的手术切除,然后进行放化疗和辅助化疗 (2-4),GBM 仍然普遍致命。GBM 表现出显著的细胞异质性,含有干细胞样 GBM 干细胞 (GSC;也称为脑肿瘤起始细胞),导致治疗耐药性和快速复发 (5-8)。与非干细胞或分化 GBM 细胞 (DGC) 相比,GSC 表达干细胞标志物,在无血清条件下产生球体,并在体内快速形成肿瘤 (9, 10)。体细胞突变导致 GBM 的发生和发展,但精准医疗迄今为止在其治疗中取得的成功有限 (11, 12)。表观遗传改变也可能促进神经胶质瘤的形成,从而提供治疗靶点(13-15)。肿瘤生物学的一个最新进展是将改变的 A-to-I RNA 编辑归因于多种致瘤途径(16,17)。在哺乳动物中,RNA 编辑会改变表达 RNA 的转录序列,而不会影响 DNA 序列(18-20)。A-to-I RNA 编辑由 ADAR(作用于 RNA 的腺苷脱氨酶)催化,是哺乳动物中最常见的 RNA 编辑事件,超过 85% 的 RNA 可能在编码和/或非编码区域进行编辑(19,21)。三种酶在 A-to-I RNA 编辑中起着重要作用。
在大流行时,细胞因子水平升高(尤其是IL-6,GM-CSF,TNF,IFNS和IL-18),通常在严重疾病的COVID-19患者中报告。这些细胞因子通常被描绘成对促进病毒疾病的SARS-COV-2反应失调的一部分。然而,差的患者结局与持续的病毒滴度和影响血管健康的健康状况密切相关。从未有过,皮质类固醇在管理Se-Vere Covid-19中的功效支持了这样一种观念,即免疫组合有助于疾病的严重性。IL-6水平升高与包括败血症1的多种炎症状态有关。 此外,IL-6封锁已用于管理某些癌症患者的CAR T细胞治疗后的细胞因子释放综合症2。 因此,如果住院的COVID-19患者中的IL-6封锁会减轻IL-6介导的病理学,减少全身性炎症并改善患者预后3,4,则进行临床试验以确定IL-6封锁是否会减轻IL-6封锁。 然而,尽管IL-6在Covid-19中经常被描述为促炎性细胞因子,但该描述在健康和疾病中脱离了IL-6的更广泛特性1。 IL-6在促进对不同病原体的耐药性方面具有重要作用,但也维持组织稳态1。 因此,尚不清楚IL-6在COVID-19中的主要作用是否是对病毒遏制或有助于局部免疫病理学和全身并发症1-4。IL-6水平升高与包括败血症1的多种炎症状态有关。此外,IL-6封锁已用于管理某些癌症患者的CAR T细胞治疗后的细胞因子释放综合症2。因此,如果住院的COVID-19患者中的IL-6封锁会减轻IL-6介导的病理学,减少全身性炎症并改善患者预后3,4,则进行临床试验以确定IL-6封锁是否会减轻IL-6封锁。然而,尽管IL-6在Covid-19中经常被描述为促炎性细胞因子,但该描述在健康和疾病中脱离了IL-6的更广泛特性1。IL-6在促进对不同病原体的耐药性方面具有重要作用,但也维持组织稳态1。因此,尚不清楚IL-6在COVID-19中的主要作用是否是对病毒遏制或有助于局部免疫病理学和全身并发症1-4。
摘要 - 具有触发动作功能的事物(IoT)平台的信息(IoT)平台允许事件条件通过创建一系列交互来自动触发IoT设备中的操作。对手利用这种互动链将虚假事件条件注入物联网中心,从而在目标IoT设备上触发未经授权的操作以实现远程注入攻击。现有的防御机制主要集中于使用物理事件指纹对事件交易的验证,以实施安全策略以阻止不安全的事件交易。这些方法旨在提供防止注射攻击的离线防御。最新的在线防御机制提供了实时防御,但是对攻击推断对物联网网络的推断影响的可靠性限制了这些方法的概括能力。在本文中,我们提出了一个独立于平台的多代理在线防御系统,即限制,以应对运行时的远程注射攻击。限制允许国防代理在运行时介绍攻击动作,并利用强化学习来优化符合IoT网络安全要求的国防政策。实验结果表明,防御代理有效地采取了针对复杂和动态远程注射攻击的实时防御动作,并通过最小的计算开销来最大化安全增益。索引术语 - 事物的内部,触发器平台,重新注射攻击,强化学习,深度复发Q网络,多代理系统。