随着手机摄像头的质量开始在现代智能手机中发挥关键作用,人们越来越关注用于改善手机照片各个感知方面的 ISP 算法。在这次移动 AI 挑战赛中,目标是开发一个基于深度学习的端到端图像信号处理 (ISP) 管道,该管道可以取代传统的手工制作的 ISP,并在智能手机 NPU 上实现近乎实时的性能。为此,参赛者获得了一个新颖的学习到的 ISP 数据集,其中包含使用索尼 IMX586 Quad Bayer 移动传感器和专业的 102 兆像素中画幅相机拍摄的 RAW-RGB 图像对。所有模型的运行时间都在联发科 Dimensity 1000+ 平台上进行评估,该平台配备专用的 AI 处理单元,能够加速浮点和量化神经网络。所提出的解决方案与上述 NPU 完全兼容,能够在 60-100 毫秒内处理全高清照片,同时实现高保真效果。本文提供了本次挑战赛中开发的所有模型的详细描述。
真核生物的基因组主要由散布的重复序列的各种家族组成,包括逆转录座子和可转移和内源性病毒元素。普遍的观点是,基因组重复体的多样家庭应被视为寄生虫或“垃圾DNA”(Bourque等,2018)。但是,可以遵循族谱树,或这些元素进化发展和分布的途径,因此,我们的理解应得到完全修订。重复元素在系统生物学和医学意义上扮演着角色,远远超出了“垃圾DNA”和病毒化石(Wells and Feschotte,2020年)。最近的研究越来越多地表明,基因组的基本成分,即使不是我们基因组的最基本成分,它具有病毒源,并且作为移动遗传介体的病毒在遗传进化中始终起着至关重要的作用(Cosby等,2019)。基因组的演变与克服和固定综合事件有关。随着每个重要的进化步骤,基因组中的移动遗传因素数量急剧增加。自从生活开始以来,就没有一个生物体没有所有这些不同的移动元素。在基因组的形成中,我们可以追踪涉及无数不同外观的移动元素的许多过程。基因组不是无数意外突变及其选择的最终产物,而是一种原始外部病毒感染的生活沉积物,这种矿床经常被回收,并且像编年史一样,重新解释(Vassilieff等,2023年)。为了完全发展,移动元素必须与他们的宿主基因组建立共同的关系(Gebrie,2023)。移动元件和宿主基因组的进化系统发育树显示强相关性(Kalendar等,2004; Kalendar等,2008; Moisy等,2014; Kalendar等,2020)。内源性逆转录病毒,也属于逆转录病毒,是单链
联系人:Sivasankari TP夫人指定:代表性手机:9363521611电子邮件:sankari@ar4-tech.com地址:491/1B,Srinvasa Avenue附近,Senthampalayam,Mastiyam,Mastiyam,Mastiyam,Mastiyam,Mastiyam,Annur,Sarkarsamakulam,Sarkarsamakulam,Sarkarsamakulam,coimbatore,coimbatore,tim/dive>印度641107110711071107.
图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
开发了太阳能移动电池掉期充电站(MBSCS)作为环保的充电站替代雷尼·罗恰尼(Renny Rochani)* 1,wahyudi sutopo 2&satrio fachri chaniago Chaniago 3于2023年12月4日收到;修订了2024年2月20日; 2024年3月4日接受; ©伊朗科学技术大学2024摘要电动摩托车(EM)是对环保车辆的有前途的解决方案,但由于用于充电和有限的充电基础设施的基于化石的能量而造成了一些困境。本文提议通过设计一个由太阳能移动电池交换站(MBSC)来解决这些困境,以解决EM基础架构。MBSC将将太阳能发电厂作为可持续能源集成,并使用电池换成系统来容纳EM。设计思维方法学用于通过与专家小组成员的焦点小组讨论来开发MBSC和技术指标评估的初始设计。使用PVSYST软件进行模拟,以评估根据所选组件定义的各种系统变体。这项研究的结果提供了MBSC的初始设计,评估MBSCS系统的技术指标,仿真结果和最佳系统变体配置。这项研究的发现将主要有助于解决EM挑战的解决方案,并提供环保的充电基础设施。这项研究有望作为旨在回答有限充电基础设施的未来移动充电站的替代解决方案,并证明了便携式太阳能发电厂的潜在使用来克服对基于化石的能源的依赖。关键字:电池交换系统;设计思维;电摩托车;专家判断;移动充电站。
在活动中说,QNU Labs的Sunil Gupta先生说:“在当今日益数字化的世界中,数字信任正在迅速减少,需要强大的加密机制来保护个人用户和组织,从未有所更大。对于像印度这样的增长最快的经济体之一,必须避免将该国关键的数字基础设施免受新兴的网络威胁的需求。这是客户采用我们的基于混合技术的解决方案来采用超安全解决方案,以负担得起的价格保护其皇冠珠宝,而不会破坏其业务。
Savitribai Phule Pune University,Pune,Maharashtra,印度摘要:该项目更多地侧重于“遥控无人驾驶的河流清洁机器人”。在印度,水污染日益增加,水污染是一个重大的环境问题,河流经常充当废料的主要载体,例如塑料,碎屑和其他污染物。当前的手动清洁方法效率低下,昂贵和其他污染物。当前的手动清洁方法效率低下,昂贵,无法进入某些水域。本文介绍了旨在应对这些挑战的移动控制河流清洁机器人的开发。机器人可以通过移动应用程序进行远程操作,从而可以精确控制其导航和清洁操作。它配备了废物收集机制和传感器,可检测和清除河流表面的碎屑。该研究涵盖了在现实情况下的设计,硬件和软件组件以及机器人的测试。结果表明,移动控制的机器人提供了一种有效,成本效益和环境可持续性的解决方案,可维护清洁水道。这项创新有可能彻底改变河流清洁过程并大大减少水污染。关键字:移动控制,河流清洁,机器人
m基于一个月的药物治疗行为评级(自定评估问题:“在过去的一个月中,您在规定的所有糖尿病药物中的百分比是多少?”),较高的百分比表明更大的可能性可能会服用药物。42,43
目的:本文旨在对自主移动机器人(AMR)的能源效率(AMR)的最新技术进行全面分析,重点介绍能源,消费模型,能源效率的运动,硬件能量消耗,路径计划中的优化和调度方法的优化,并建议未来的研究指示。设计/方法/方法:系统文献综述确定了244篇分析论文。从2010年开始发表的研究文章在包括Google Scholar,ScienceDirect和Scopus在内的数据库中搜索,并使用与各种机器人系统中的能源和功率管理有关的关键字和搜索标准进行了搜索。调查结果:评论重点介绍了以下关键发现:1)电池是AMR的主要能源,并且电池管理系统的进步提高了效率; 2)混合模型具有卓越的准确性和鲁棒性; 3)运动占移动机器人总能源消耗的50%以上,强调需要优化的控制方法; 4)诸如质量影响AMR能源消耗之类的因素; 5)路径规划算法和调度方法对于能量优化至关重要,算法选择取决于特定的要求和约束。研究局限性:审查集中于车轮机器人,不包括步行的机器人。未来的工作应改善消费模型,探索优化方法,检查AI/ML角色并评估能源效率的权衡。关键字:自动移动机器人,能源效率,系统文献审查,优化,能源消耗模型,路径计划文章类型:评论独创性/价值:本文对AMR中的能源效率进行了全面的分析,强调了系统文献综述的关键发现,并提出了未来的研究方向,以进一步进步。
摘要:移动订户越来越多地要求宽带服务的可用性,而无线电资源允许连接它们的无线电资源是有限的。了解移动互联网消费趋势和订户流量需求对于实现现有无线电资源的管理至关重要。但是,由于移动网络的复杂性,可能很难理解和描述移动用户的数据使用模式。在这项研究中,我们研究和表征移动网络中的数据使用模式和用户行为以执行流量需求预测。我们利用了通过历史电信运营商(HTO)网络的移动网络测量和计费平台收集的数据集,称为U2020/MAE。我们阐明了不同的网络因素,并通过将HTO的移动用户作为用例来研究它们如何影响数据使用模式。然后,我们将移动用户的数据使用模式进行比较,考虑到总数据消耗,网络访问,每个用户创建的会话数,吞吐量和用户满意度级别与服务。最后,我们提出了一个使用机器学习模型来使用HTO数据来预测流量需求的应用程序。关键字:LTE核心网络,流量,机器学习,预测简介