猫型心肌病(HCM)是一种常见的心脏病,影响了所有猫的10-15%。带有HCM的猫表现出呼吸困难,嗜睡和心杂音;此外,猫HCM也可能导致猝死。在各种方法和指数中,射线照相和超声检查是猫HCM诊断的黄金标准。但是,仅使用射线照相就只能达到75%的精度。因此,我们使用231个猫(143 hcm和88 normal)的腹侧放射线图培训了五个残留体系结构(Resnet50V2,Resnet152,InceptionResnetV2,MobilenEtV2和Xception),并研究了用于诊断Finely Finely HCM HCM的最佳体系结构。为了确保数据的普遍性,X射线图像是从5个独立机构获得的。此外,测试中使用了42张图像。测试数据分为两个;在预测分析中使用了22片射线照相图像,并在评估窥视现象和投票策略的评估中使用了20个X射线照相图像。结果,所有模型的精度> 90%; RESNET50V2:95.45%; Resnet152:95.45; InceptionResnetv2:95.45%; Mobilenetv2:95.45%和Xception:95.45。此外,将两种投票策略应用于五个CNN模型; SoftMax和多数投票。因此,SoftMax投票策略在合并的测试数据中达到了95%的精度。我们的发现表明,使用残留体系结构的自动学习系统可以帮助兽医放射科医生筛选HCM。
检测过早的心室收缩(PVC)在心脏学领域至关重要,不仅是改善卫生系统,而且还要减少手动分析心电图(ECG)的专家工作量。PVC是一个无害的常见发生,以额外的心跳为代表,其诊断并不总是容易识别,尤其是在长期手动ECG分析完成时。在某些情况下,与其他病理相关时可能会导致灾难性后果。这项工作介绍了一种使用机器学习技术识别PVC的方法,而无需提取功能和交叉验证技术。特别是使用了一组六个分类器:决策树,随机森林,长期术语记忆(LSTM),双向LSTM,RESNET-18,MOBILENETV2和SHUFFLENET。已经对从MIT-BIH心律失常数据库中提取的数据进行了两种类型的实验:(i)原始数据集和(ii)构成数据集。Mobilenetv2在两个实验中都出现了高性能和PVC最终诊断结果的有希望的结果。最终结果显示第一个实验中的精度为99.90%,尽管未使用特征检测技术,但在第二个实验中显示了99.00%。我们使用的方法是专注于分类而无需使用fe fe fearture提取和交叉验证技术,使我们能够提供出色的性能并获得更好的结果。最后,这项研究将其定义为理解深度学习模型不正确分类的解释的第一步。
摘要:由于数据量和计算资源的不断增加,深度学习在各个领域取得了许多成功。深度学习在移动和嵌入式设备上的应用越来越受到重视,对移动和嵌入式设备的AI能力进行基准测试和排名成为亟待解决的问题。考虑到模型的多样性和框架的多样性,我们提出了一个基准测试套件AIoTBench,专注于评估移动和嵌入式设备的推理能力。AIoTBench涵盖三种典型的重量级网络:ResNet50,InceptionV3,DenseNet121,以及三种轻量级网络:SqueezeNet,MobileNetV2,MnasNet。每个网络由三个专为移动和嵌入式设备设计的框架实现:Tensorflow Lite,Caffe2,Pytorch Mobile。为了比较和排名设备的AI能力,我们提出了两个统一的指标作为AI分数:每秒有效图像(VIPS)和每秒有效FLOP(VOPS)。目前,我们已经使用基准测试对 5 款移动设备进行了比较和排名。此列表将很快扩展和更新。
2019 年 12 月,冠状病毒大流行开始。冠状病毒疾病-19 (COVID-19) 通过直接接触直接从受污染的表面传播。为了对抗病毒,需要大量设备。口罩是人多拥挤场所个人防护的重要组成部分。因此,确定一个人是否戴着口罩对于融入当代社会至关重要。为了实现这一目标,本文提出的模型使用了深度学习库和 OpenCV。出于安全考虑,选择了这种方法,因为它在部署期间具有很高的资源效率。分类器是使用 MobileNetV2 结构构建的,该结构设计为轻量级,能够在 NVIDIA Jetson Nano 等嵌入式设备中使用以进行实时口罩识别。模型构建的阶段包括收集、预处理、拆分数据、创建模型、训练模型和应用模型。该系统利用图像处理技术和深度学习来处理实时视频源。当有人没有戴口罩时,输出最终会通过内置蜂鸣器发出警报声。实验结果和测试用于验证系统的性能。包括训练和测试,识别率达到99%。
摘要 目前神经网络模型的量化方法主要分为训练后量化(PTQ)和量化感知训练(QAT)。训练后量化只需要一小部分数据即可完成量化过程,但是其量化模型的性能不如量化感知训练。本文提出一种新的量化方法Attention Round,该方法让参数w有机会在量化过程中被映射到所有可能的量化值上,而不仅仅是w附近的两个量化值,且被映射到不同量化值的概率与量化值与w的距离负相关,并以高斯函数衰减。此外,本文以有损编码长度为度量为模型不同层分配位宽来解决混合精度量化问题,有效避免了求解组合优化问题。本文还对不同的模型进行了定量实验,结果证实了所提方法的有效性。对于ResNet18和MobileNetV2,本文提出的训练后量化仅需要1,024个训练数据和10分钟即可完成量化过程,可以达到与量化感知训练相当的量化性能。
网络压缩由于能够减少推理过程中的内存和计算成本而得到了广泛的研究。然而,以前的方法很少处理残差连接、组/深度卷积和特征金字塔网络等复杂结构,其中多层的通道是耦合的,需要同时进行修剪。在本文中,我们提出了一种通用的通道修剪方法,可应用于各种复杂结构。特别地,我们提出了一种层分组算法来自动查找耦合通道。然后,我们基于 Fisher 信息推导出一个统一的度量来评估单个通道和耦合通道的重要性。此外,我们发现 GPU 上的推理加速与内存 2 的减少而不是 FLOPs 的减少更相关,因此我们采用每个通道的内存减少来规范重要性。我们的方法可以用来修剪任何结构,包括具有耦合通道的结构。我们对各种骨干网络进行了广泛的实验,包括经典的 ResNet 和 ResNeXt、适合移动设备的 MobileNetV2 以及基于 NAS 的 RegNet,这些实验都针对尚未得到充分探索的图像分类和对象检测。实验结果验证了我们的方法可以有效地修剪复杂的网络,在不牺牲准确性的情况下提高推理速度。
摘要:大脑是人类控制和交流的中心。因此,保护它并为其提供理想条件非常重要。脑癌仍然是世界上死亡的主要原因之一,并且检测恶性脑肿瘤是医疗图像分割的优先事项。与正常组织相比,脑肿瘤分割任务旨在鉴定属于异常区域的像素。深度学习近年来已经解决了解决这个问题的力量,尤其是类似U-Net的架构。在本文中,我们提出了一个有效的U-NET架构,其中包含三个不同的编码器:VGG-19,Resnet50和MobilenetV2。这是基于转移学习,然后是应用于每个编码器的双向特征金字塔网络,以获得更多的空间相关特征。然后,我们融合了从每个网络的输出中提取的特征图,并通过注意机制将它们合并到我们的解码器中。在Brats 2020数据集上评估了该方法,以分割不同类型的肿瘤,结果在骰子相似性方面表现出良好的性能,整个肿瘤,核心肿瘤和增强肿瘤的系数为0.8741、0.8069和0.7033。
muhtarom ahkam maulana脑肿瘤是脑细胞在脑组织中生长和发育时的疾病。可以通过身体检查和手动诊断来对医生检测脑肿瘤。手动诊断有局限性,即误诊的可能性。对计算机视觉的发展已应用于脑肿瘤图像的分类。这项研究使用深度学习对脑肿瘤图像进行了分类,正是基于卷积神经网络(CNN)的转移学习方法。用于传输学习的预训练模型为Densenet121,InceptionResnetv2,MobilenetV2,NasnetMobile和Resnet50v2。数据集包含7020个图像,其中包含四个类别:神经胶质瘤,脑膜瘤,垂体和从Kaggle获得的无肿瘤。使用预训练模型的几种情况进行了测试,该模型用于超参数辍学率和已经调整的密集单元。使用平均精度,平均精度,平均灵敏度和平均特异性构建的模型评估。评估结果表明,表现最佳的模型的准确性为97.70%,损失为0.066。这些结果在混乱矩阵中说明了,该矩阵表明该模型可以很好地对脑肿瘤图像进行分类。关键字:分类,转移学习,脑肿瘤,卷积神经网络。
硅基探针的记录点数量不断增加,对以准确、高效的方式检测和评估单个单元活动提出了巨大挑战。目前,高精度离线评估有单独的解决方案,而计算资源更有限的嵌入式系统也有单独的解决方案。我们提出了一种基于深度学习的脉冲排序系统,该系统利用无监督和监督范式来学习一般的特征嵌入空间并检测原始数据中的神经活动以及预测要排序的特征向量。无监督组件使用对比学习从单个波形中提取特征,而监督组件则基于 MobileNetV2 架构。我们系统的一个关键优势是它可以同时在多个不同的数据集上进行训练,从而比以前的基于深度学习的模型具有更大的通用性。我们证明,所提出的模型不仅达到了当前最先进的离线脉冲排序方法的准确性,而且具有在边缘张量处理单元 (TPU) 上运行的独特潜力,TPU 是专为人工智能和边缘计算设计的专用芯片。我们将我们的模型性能与配对数据集以及混合记录上的最新解决方案进行了比较。此处展示的系统为将基于深度学习的尖峰分类算法集成到可穿戴电子设备中铺平了道路,这将成为高端脑机接口的关键元素。© 2023 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要。在研究发现中,1p/19q基因的共同缺失与低级神经胶质瘤中的临床结局相关。预测1P19Q状态的能力对于治疗计划和患者随访至关重要。本研究旨在利用特殊的基于MRI的卷积神经网络进行脑癌检测。尽管Restnet和Alexnet等公共网络可以使用Transfer学习有效地诊断脑癌,但该模型包含了许多与医学图像无关的权重。因此,转移学习模型无法可靠诊断结果。要处理可信赖性问题,我们从头开始创建模型,而不是依赖于预训练的模型。为了启用灵活性,我们将卷积堆叠与辍学和完全连接操作相结合,可以通过减少过度拟合来证明性能。在模型训练期间,我们还补充了给定的数据集并注入高斯噪声。我们使用三倍的交叉验证来训练最佳选择模型。比较InceptionV3,VGG16和MobilenetV2对预训练的模型进行了微调,我们的模型会产生更好的结果。在验证集125个编码和31个未代码图像的验证集中,提议的网络可实现96.37%的F1分数,97.46%的精度,而96.34%的召回在分类1P/19Q Codeletion和Not Codeletion Image时。
