摘要:癫痫是第二大最常见的慢性神经系统疾病,其治疗往往因患者对药物没有反应而变得复杂。抗癫痫药物治疗失败通常是由于存在非癫痫性癫痫发作。区分非癫痫性癫痫发作和癫痫性癫痫发作需要对癫痫监测单元记录的脑电图 (EEG) 进行昂贵且耗时的分析。机器学习算法已用于从 EEG 中检测癫痫发作,通常使用 EEG 波形分析。我们采用了一种替代方法,使用卷积神经网络 (CNN) 和 MobileNetV2 的迁移学习来模拟癫痫病专家对 EEG 图像的真实视觉分析。来自不同医疗机构的两个癫痫监测单元的 107 名成年受试者的总共 5359 张 EEG 波形图图像被分为癫痫组和非癫痫组,以对 CNN 进行训练和交叉验证。该模型在提取训练数据的站点实现了 86.9%(曲线下面积,AUC 0.92)的准确率,在仅使用数据进行验证的另一个站点实现了 87.3%(AUC 0.94)的准确率。这项调查证明了使用 CNN 分析 EEG 绘图图像可以实现的高准确率以及该方法在 EEG 可视化软件中的稳健性,为在临床环境中使用类似方法进一步对癫痫发作进行细分奠定了基础。
摘要:深度学习模型已在多个领域得到应用,但在医学成像等敏感领域仍需要进行调整。由于时间限制,医学领域需要使用该技术,因此准确度水平可确保可信度。出于隐私方面的考虑,医学领域的机器学习应用无法使用医疗数据。例如,由于缺乏脑部 MRI 图像,使用基于图像的分类很难对脑肿瘤进行分类。通过应用基于生成对抗网络 (GAN) 的增强技术,解决了这一挑战。深度卷积 GAN (DCGAN) 和 Vanilla GAN 是用于图像生成的 GAN 架构的两个示例。本文提出了一个使用 GAN 架构和深度学习模型生成和分类脑部 MRI 图像的框架,称为 BrainGAN。因此,本研究提出了一种自动检查生成的图像是否令人满意的方法。它使用三个模型:CNN、MobileNetV2 和 ResNet152V2。使用 Vanilla GAN 和 DCGAN 生成的图像训练深度迁移模型,然后在由真实脑部 MRI 图像组成的测试集上评估其性能。从实验结果来看,ResNet152V2 模型的表现优于其他两个模型。ResNet152V2 基于 DCGAN 架构生成的脑部 MRI 图像实现了 99.09% 的准确率、99.12% 的精确率、99.08% 的召回率、99.51% 的曲线下面积 (AUC) 和 0.196 的损失。
产前干预可以降低产后认真的冠心病患者的风险,但目前的诊断是基于定性标准,这可能导致临床医生之间的诊断差异。目的:使用深度学习模型检测患有低塑性左心脏综合征(HLHS)胎儿的心脏超声(US)视频的形态和时间变化。招募了一小部分健康和13名HLHS患者,并收集了三个妊娠时间点的超声视频。对视频进行了预处理并分段到心脏周期视频,并培训了五个不同的深度学习CNN-LSTM模型(Mobilenetv2,Resnet18,Resnet15,Resnet50,Densenet121和Googlelenet)。最佳表现的三个模型用于开发一种新型的堆叠CNN-LSTM模型,该模型是使用五倍的交叉验证对HLHS和健康患者进行分类的训练。堆叠CNN-LSTM模型的准确性,精度,敏感性,F1得分和90.5%,92.5%,92.5%,92.5%,92.5%和85%的精度,精度,敏感性,F1得分和特异性的准确性,精度,敏感性,F1得分和特异性分别优于其他预先训练的CNN-LSTM模型,分别是视频范围的分类以及90级分类和92。使用超声视频的主题分类分别为92.5%,92.5%和85%。这项研究表明,使用深度学习模型使用超声视频对CHD产前患者进行分类的潜力,该视频可以在临床环境中对疾病的客观评估进行分类。
抽象的手语是聋人和静音者的唯一交流手段。,但是许多普通人不知道手语。因此,用手语说话的人很难与那些不说手语交流的人进行交流。本文扩展了先前提出的卷积神经网络(CNN)模型,用于使用基于MobileNETV2的转移学习模型来预测手语。所提出的系统旨在通过将手语的手势转化为文本或语音来为听力受损的用户提供有效的沟通。TensorFlow K-NN图像分类器用于训练训练集的模型。分类器涉及k-neart的邻居分类器。类的数量取决于数据集中唯一标志的数量,每个类都与一个符号关联。Mobilenet模型已在大型图像数据集上进行了预训练,并在ASL手符号图像上进行了微调以学习判别特征。从Mobilenet模型中提取功能后,使用KNN分类器进行手语识别。knn是一种简单而有效的算法,它基于特征空间中其K-Neart最邻居的多数类别为输入样本分配标签。在这种情况下,邻居对应于先前看到的手语手势。拟议的手语翻译系统具有许多实际应用,例如在日常互动期间有听力或语音障碍的人。关键字: - 手语翻译器,K -NN图像分类器,CNN,Mobilenet,TensorFlow,Tokbox。此外,它可以集成到教育平台中,以支持手语学习者并提供包容性的语言教育机会。
mung豆种子在农业生产和食品加工中非常重要,但是由于它们的多样性和相似的外观,传统的分类方法都具有挑战性,以解决这一问题,这项研究提出了一种基于学习的方法。在这项研究中,基于深度学习模型MobilenetV2,提出了DMS块,并通过引入ECA块和Mish激活函数,即提出了高度优势网络模型,即HPMobileNet,提出,该模型被提出,该模型是在eLBIND中探索的,可用于分类和精确的图像识别。在这项研究中,收集了八种不同的绿豆种子,并通过阈值分割和图像增强技术获得了总共34,890张图像。hpmobilenet被用作主要网络模型,并通过在大规模的绿豆种子图像数据集上进行训练和精细调整,实现了有效的特征提取分类和识别能力。实验结果表明,HPMobileNet在Mung Bean Seed Grain Grain分类任务中表现出色,其准确性从87.40%提高到测试集的94.01%,并且与其他经典网络模型相比,结果表明,HPMobileNet可以达到最佳结果。此外,本研究还分析了学习率动态调整策略对模型的影响,并探讨了将来进一步优化和应用的潜力。因此,这项研究为开发绿豆种子分类和智能农业技术提供了有用的参考和经验基础。
摘要 恶意软件是一种不断发展和不断上升的威胁,尤其是勒索软件,这是一种恶意软件。勒索软件即服务平台的兴起加剧了这种激增,恶意软件研究人员需要快速可靠地识别勒索软件家族的选项,以保护个人数据和重要基础设施。在本研究中,我们提供了一种基于图像的检测和分类方法,可以通过将勒索软件与已知的勒索软件家族进行比较来帮助研究人员识别勒索软件的来源。我们的目标是使用有限大小的训练数据集和 COTS 硬件对给定的勒索软件样本达到高准确度和低误报率。我们使用了从 VirusTotal (VT) 获得的 347,307 个 Windows 可执行恶意软件样本的数据集。这些样本由 VT 在 2017 年至 2020 年期间收集。从这个数据集中,我们选择了被确认为已知勒索软件的样本。我们应用了一种新颖的 AI 驱动方法,根据二进制文件的图像表示对勒索软件进行分类。安全从业人员和学者已将这种方法用于一般恶意软件,但并未用于勒索软件等特定类型的恶意软件。我们使用了一种简单的方法,根据 Keras(TensorFlow 开源机器学习平台的 Python API)中 16 个可用应用程序来选择性能最佳的卷积神经网络。这些应用程序在 ImageNet 自然图像数据集上进行了预训练。所提出的方法实现了 90% 以上的准确率和高召回率,基于三通道 (RGB) 图像高概率检测勒索软件。我们数据集上得分最高的模型是 MobileNet 和 MobileNetV2。关键词:勒索软件、计算机视觉、深度学习、CNN、机器学习
MRI(磁共振成像)是一种广泛使用的非侵入性肿瘤检测诊断工具。该项目比较了各种机器和深度学习模型在 MRI 扫描中对脑肿瘤(神经胶质瘤、脑膜瘤、垂体瘤和无肿瘤)进行分类时的表现,并与受过训练的放射科医生设定的标准进行了比较。部署的模型包括卷积神经网络 (CNN)、源向量机 (SVM)、随机森林分类器 (RFC)、几种迁移学习模型以及 MobleNetV2 到 SVM 的混合模型。每个模型都根据预处理和标准化数据的相同训练测试分割进行训练。采用适当的超参数调整和模型特定的优化来实现最高准确度并保持稳健性。生成了准确度指标和混淆矩阵来评估模型的有效性。此外,人工降级了一个单独的测试数据集来模拟低场 MRI 扫描,以评估模型的稳健性。在有和没有数据增强的情况下评估模型性能,数据增强包括对训练集进行随机降级、旋转、翻转和缩放。研究表明,放射科医生的总体诊断准确率为 87%:RFC 准确率为 94%,SVM 准确率为 95%,VGG16(最准确的迁移学习模型)准确率为 97.9%,混合 MobileNetV2/SVM 准确率为 98.2%,CNN 准确率为 97.6%。所有模型的放射科医生平均准确率更高,其中混合模型表现最佳。在降级数据集上测试以模拟低场 MRI 时,增强大大改善了 SVM 和 RFC 模型的结果;但是,在降级图像上测试时,CNN 模型的准确性受到的影响很小,增强无效。
摘要 - 由于其可靠性,安全性和持续的学习能力,预计自动驾驶汽车将彻底改变未来的运输。研究人员正在积极参与开发自主驾驶系统,采用行为克隆和加强学习等技术。这项研究通过采用端到端方法来介绍一个独特的观点,并使用摄像头输入根据从人类驾驶专业知识中学到的模型来预测转向角度。该模型表现出快速训练,并达到超过90.1%的预测百分比(MPP)。在这种情况下,该研究旨在通过从具有各种激活功能的预训练的VGG19模型中应用转移学习来复制驾驶员行为。培训了所提出的模型,可以将道路图像分析为输入,从而预测最佳转向调整。评估包括ROS2模拟环境中的数据集,将结果与包括NVIDIA,Mobilenet-V2,Resnet50,VGG16和VGG19在内的几个卷积神经网络(CNN)模型进行了比较。还探索了激活功能的影响,例如指数线性单元(ELU),整流线性单元(relu)和泄漏的relu对传输学习模型的影响。这项研究通过解决现实世界驾驶复杂性并促进其融入日常运输的促进自主驾驶系统有助于提高自主驾驶系统。利用转移学习和全面评估的新型方法强调了其在优化自动驾驶技术方面的重要性。关键字 - 自动驾驶汽车,剩余网,Mobilenetv2,VGG16,VGG19,卷积神经网络(CNN),激活功能
摘要 - 本文提出了专门为自动驾驶汽车设计的高级车道保管援助系统。提出的模型将强大的Xeption网络与转移学习和微调技术相结合,以准确预测转向角度。通过分析摄像机捕获的图像,该模型有效地从人类驾驶知识中学习,并提供了对安全车道保持所需的转向角度的精确估计。转移学习技术允许模型利用从Imagenet数据集获得的广泛知识,而微型调整技术则用于根据输入图像来指导角度预测的特定任务来定制预训练的模型,从而实现最佳性能。微调是通过最初冷冻预训练的模型并仅训练前10个时期的完全连接(FC)层来开始的。随后,整个模型涵盖了主链和FC层,以进行进一步的训练。为了评估系统的有效性,对包括NVIDIA,MOBILENETV2,VGG19和InceptionV3在内的流行现有模型进行了全面的比较分析。评估包括基于损耗函数的操作准确性的评估,特别是利用了平方误差(MSE)方程。所提出的模型实现了训练和验证的最低损耗函数值,证明了其出色的预测性能。这种实际评估提供了对模式的可靠性及其有效协助行驶任务的潜力的宝贵见解。此外,通过对预设计的轨迹和地图进行广泛的现实世界测试进一步评估了该模型的性能,从而导致转向角度远离所需轨迹的最小偏差。关键字 - 行长辅助,自动驾驶汽车,X CEPTION,转移学习,微调,转向角度预测
冠状病毒病的当前诊断方法2019(Covid-19)主要依赖于逆转录聚合酶链反应(RT-PCR)。但是,RT-PCR是昂贵且耗时的。因此,必须开发一种准确,快速且廉价的筛选方法,以诊断Covid-19。在这项研究中,我们将图像处理技术与深度学习算法相结合,以增强胸部X射线(CXR)传感器图像的Covid-19鉴定的准确性。对比度限制的自适应直方图均衡(CLAHE)用于提高不清楚图像的可见性水平。此外,我们研究了我们的图像融合技术是否可以有效地提高七个深度学习模型的性能(Mobilenetv2,Resnet50,Resnet152V2,Inpection-Resnet-V2,Densenet121,Densenet201,densenet201和Xpection)。提出的特征融合技术涉及将原始图像的特征与受Clahe的图像的特征合并,然后使用合并的功能来重新训练,测试和验证深度学习模型,以识别CXR图像中的Covid-19。为了避免图像的发生不匹配现实并确保高模型稳定性,没有进行数据增强。这项研究的结果表明,提出的图像融合技术可以改善分类评估指标,尤其是在两级和三级分数中深度学习模型的敏感性。灵敏度是指模型正确检测感染的能力。将X受感受与所提出的特征融合技术相结合时,达到了这项研究的最高精度。在三级分类中,该方法的准确性为99.74%,五倍交叉验证的平均准确性为99.19%。在两类分类中,上述方法的准确性为99.74%,五倍交叉验证的平均准确性为99.50%。结果表明,具有深度学习算法的提议的图像处理技术具有非凡的概括。
