在高增长组织中,在快速开发周期中确保产品质量至关重要。诸如Dora(DevOps研究和评估)和空间(软件生产力,评估,控制和评估)等框架具有高级开发人员的生产率,但系统地改善质量实践的差距很大。本文介绍了专门针对高增长组织的综合质量成熟模型。该模型包括14个质量维度,从静态测试到配置管理,提供了一种整体质量增强方法。通过案例研究和实施策略,我们证明了该模型在提高产品质量,降低缺陷以及提高快速扩展环境中的运营效率方面的功效。
结果:平均发病年龄为45(SD+12.8)年,中位疾病持续时间为12.4(IQR 7.3至17.5)年。338(94.1%)的总RA患者接受了常规的合成DMARDS [CSDMARD],同时基于报销类型,202(4.45%)中有9名接受了生物DMARDS [BDMARDS]。最常用的dmard是甲氨蝶呤[MTX]。目前,在359个中,有155名(43.2%)用2个DMARD治疗,而148(41.2%)进行了DMARD单一疗法。患者的疾病活性仅接受Csdmard(s)为低(<3.2),中度(> 3.2至5.1)和高(> 5.1),分别为44.4、45.8和8.2%的比例。接受和收到BDMARD的患者人数很小(21例)。其中,有76.2%的响应者是50%的治疗靶标,而(25%)具有无药物缓解。只有4.5%的长期BDMARD,其中38.1%的疾病活性低[LDA]和61.9%的DAS中等DA。低剂量皮质类固醇[LDC]总体处方为63.5%。在CSDMARDS组中,其使用与较高的DA有关;低,中度和高DA的患者中的52.3、69.7和82.1%。在达到治疗靶标的患者中,有61.8%的缓解率/LDA> 1年。与实现目标相关的因素是缓解,诱导MTX和DMARDS启动后的早期缓解的历史。
○ITHACA,实时高级计算应用程序,是整合已经建立了良好的CSE/CFD开源软件○RBNICS作为新手ROM用户(培训)的教育计划(FEM)。○ Argos A dvanced R educed order modellin G O nline computational web server for parametric S ystems ○ PINA a deep learning library to solve differential equations ○ EzyRB data-driven model order reduction for parametrized problems ○ PyDMD a Python package designed for Dynamic Mode Decomposition ( in collaboration with University of Texas, CERN, and University of Washington)
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
第2章始于本文档中涵盖的各种类型的生成AI模型的介绍。到目前为止,检查了单峰文本对文本模型(第2.1章)和多模式图像和视频生成器,它们以文本,图像,视频或其组合形式进行输入,并生成图像(第2.2章)或视频(第2.3章)(第2.3章)。随后,第3章概述了每种模型带来的机会,包括一般机会和与IT安全性特别相关的机会。第4章和第5章然后解决与生成AI模型以及相应的对策相关的风险。由于许多风险和对策在整个不同模态的处理或生成(例如文本,图像,视频)中类似,因此以交叉方式考虑它们以避免冗余内容。最后,第6章提供了对策的映射,以将其定位在生成AI模型的生命周期中。
摘要 - 量词计算引入了一种新的计算范式,该范式有望解决无法通过经典计算机效率解决的问题。因此,量子应用程序将越来越多地集成到经典应用中。要将这些复合应用程序带入生产中,需要进行自动部署和编排技术,以避免手动易行错误和耗时的过程。对于非量化应用程序,近年来已经开发了各种部署技术。但是,量子应用程序的部署目前与非量子应用程序显着不同,因此导致了用于部署量子应用程序的不同建模程序。为了克服这些问题,我们提出了TOSCA4QC,该TOSCA4QC介绍了两种部署建模样式,该模型基于拓扑和编排规范的云应用程序(TOSCA)标准(TOSCA)标准,用于自动化量子应用的部署和编排:(i)SDK规格模型的模型,以覆盖所有技术模型,以涵盖所有技术部署详细信息(II)技术的详细信息(II)详细信息(II)详细信息(II)详细信息(II)。原则。我们进一步展示了如何将现有的模型驱动开发(MDD)方法应用于将SDK-静态模型重新定为可执行的SDK特定模型。我们证明了原型实施的实际可行性,作为Tosca生态系统Opentosca的扩展以及IBMQ和量子模拟器的三个案例研究。索引术语 - Tosca,量子计算,部署自动化,建模,编排
我们研究了深层生成模型对即将到来的计算机视觉模型中潜在社会偏见的影响。互联网目睹了a-a-a-a-aford图像的涌入,因此对可能伴随的固有偏见产生了担忧,这可能导致有害内容的分离。本文探讨了如果将生成的图像用作未来模型的训练数据,是否会发生有害的反馈回路,导致偏差。我们通过逐步将可可和CC3M数据集中的原始图像替换为通过稳定的差异生成的图像来进行模拟。修改后的数据集用于训练OpenCLIP和图像字幕模型,我们根据质量和偏差进行评估。与期望相反,我们的发现表明,在训练期间引入产生的图像并不能统一扩大偏见。相反,观察到跨特定任务的偏置缓解实例。我们进一步阐述了可能影响这些现象的因素,例如图像生成中的伪像(例如,模糊的面孔)或原始数据集中的预先偏见。
2018 年台风飞燕侵袭日本大阪湾,造成关西国际机场被淹,暴露出沿海机场在极端天气面前的脆弱性。1 此次事件凸显了在海平面上升和风暴加剧的情况下重新评估基础设施恢复力的迫切需要。1,2 案例事实:2018 年 9 月 4 日,台风飞燕袭击日本大阪湾,风速 130 英里/小时,风暴潮高达 11 英尺,关西国际机场完全被淹没。3 关西国际机场建在大阪湾的一个人工岛上。1 风暴潮彻底冲击了海堤,淹没了跑道,导致 8000 名乘客和工作人员被困。此外,一艘被台风吹偏的油轮摧毁了通往大陆的唯一桥梁,进一步切断了机场与大陆的联系。1 超过 8000 名乘客和机场工作人员被困近 36 个小时。不幸的是,台风导致该地区11人死亡,400多人受伤。2 国内航班在两天后部分恢复,但完全恢复需要数周时间。4 事件的流行病学方面:《日本许多主要机场接近海平面,这是一场灾难》这篇文章是一项描述性分析,而非流行病学研究。1 在考察台风飞燕对关西国际机场的影响以及气候风险对航空的影响时,没有采用结构化的研究设计或相对风险 (RR) 或优势比 (OR) 的参数模型。相反,本文讨论了案例比较,并在一个框架内引用了过去的极端天气事件和地理空间数据,强调低洼机场仍然很脆弱。虽然作者提供了气候模型预测,但他们没有对混杂因素(例如基础设施抵抗力和灾害响应)应用回归模型或统计控制。 1 文章中潜在的偏见来源源于选择偏见,因为所讨论的机场都是主要的国际枢纽机场,而分析并未考虑可能同样面临气候相关风险的小型区域机场。2 没有控制混杂变量,例如风暴防备、基础设施弹性或政府应对政策,而这些是决定机场脆弱性的主要因素。5 文章概括地表明,气候变化会给机场带来洪水风险,但遗憾的是,它没有提供评估该风险的模型证据或比较结果。 文章没有明确说明如何处理与缺失数据相关的潜在数据缺口。1 然而,鉴于这是一项新闻研究而非科学研究,机场洪水事件的历史数据少报或缺失可能会影响分析的全面性。事件管理: 公共卫生部门对台风“飞燕”的响应主要包括疏散、恢复服务并长期承担灾害损失。4 由于台风造成严重洪涝,主通道桥梁无法通行,日本政府和关西国际机场当局协调安排包租紧急渡轮和巴士疏散了8000名滞留旅客。2,4 然而,由于机场的防洪设施无法抵御这场创纪录风暴带来的洪流,防灾准备工作显得不足。交通中断以及缺乏直接的应急计划,进一步影响了当时的应对工作。
摘要 - 将神经梯度体系结构(NGA)集成到大语言模型(LLMS)中,导致了自然语言处理的明显进步,从而增强了生成文本的精确性和相干性。通过采用梯度驱动的计算,NGA根据上下文提示动态调整内部途径,从而使LLMS能够更有效地适应各种语言任务。这种方法证明了在上下文理解至关重要的情况下,诸如机器翻译,摘要和对话生成等任务的改进。NGA的融合也有助于减少常见问题(例如重复性或无关的产出),从而提高了生成内容的总体质量。此外,NGA的适应性允许在各个领域对LLM进行更有效的微调,从而促进了其在专业领域的应用,而无需大量的重新培训。经验结果表明,NGA在完善LLM的生成过程中的功效,强调了其大大提高自然语言处理系统性能的潜力。因此,NGA的采用代表了LLM体系结构演变中的关键进展,为开发更响应敏感和上下文意识到的语言模型提供了强大的框架。
简要说明:国际参考电离层 (IRI) 是由空间研究委员会 (COSPAR) 和国际无线电科学联合会 (URSI) 赞助的一个国际项目。这些组织在 20 世纪 60 年代末成立了一个工作组,根据所有可用的数据源,制定电离层的经验标准模型。该模型的几个稳步改进版本已经发布。IRI 描述了从约 50 公里到约 2000 公里的高度范围内的电子密度、电子温度、离子温度和离子成分。它提供了磁平静条件下非极光电离层的月平均值。主要数据来源是全球电离层网络、强大的非相干散射雷达(Jicamarca、Arecibo、Millstone Hill、Malvern、St. Santin)、ISIS 和 Alouette顶部探测器,以及几颗卫星和火箭上的现场仪器。IRI 每年在特别 IRI 研讨会期间更新(例如,在 COSPAR 大会期间)。计划进行几项扩展,包括离子漂移模型、极光和极地电离层的描述以及对磁暴效应的考虑。