当代的大规模视觉语言模型(VLM)具有强大的表示能力,使它们无处不在,可以增强图像和文本理解任务。他们经常以对比的方式受到大量图像和相应的文本字幕的对比方式进行训练。尽管如此,VLMS经常在构图推理任务上挣扎,这些任务对对象及其属性的复杂相互作用进行了精细的了解。此失败可以归因于两个主要因素:1)对比的方法传统上专注于从现有数据集中开采负面示例。但是,该模型可能不难区分阳性检查。替代采矿的替代方法是负样本2),但现有的生成方法主要集中于生成与给定图像相关的硬性负面文本。在另一个方向上进行挖掘,即生成与给定文本相关的负面图像样本已被忽略。为了克服这两种限制,我们提出了一个框架,不仅在两个方向上矿山,而且在这两种方式(即图像和文本)中产生了有挑战性的负面样本。利用这些生成硬性负样本,我们在涉及多模式综合推理的任务中显着提高了VLMS的性能。我们的代码和数据集在https://ugorsahin.github.io/enhancing-- vlm.html上发布。
在电子行业中,众所周知,材料和组件的采购以及电气设备的制造都有滥用人权的实例。例如,通过在刚果民主共和国的钴矿中使用童工和强迫劳动,或中国电气组装和加工线中的工人所遭受的强迫劳动。我们了解到,我们对现代奴隶制的最大接触是我们的产品供应链。2022年12月,赫尔大学的Wilberforce研究所对我们的主要供应商进行了访问,目的是确定Myenergi运营的地区和部门的潜在现代奴隶制热点。根据这项研究,我们已经确定了加强我们的入职系统,政策和程序的行动,以便我们能够更有效地确定供应链中的风险。向供应商的问题将旨在确定劳动管理实践和流程,重点是培训,监视和举报。2023年2月,威尔伯福斯研究所还对我们的制造地点进行了现代奴隶制风险评估。培训,以确保对现代奴隶制和人口贩运的风险高度了解我们的供应链和业务的风险,我们已经为员工开始了内部培训,
人类的视野。这种能力不仅对于诸如对象操纵和导航之类的实践日常任务至关重要,而且在培养人类创造力方面起着关键作用,使我们能够以深度,幽默感和沉浸感进行设想和制作对象。在本文中,我们重新审视了视图综合问题并提出:我们如何学习一般的3D表示以促进可扩展的视图综合?我们试图从以下两个观察结果中调查这个问题:i)到目前为止,目前的最新进展主要集中在训练速度和/或提高效率上[12,18,18,31,48]。值得注意的是,这些进步都共同依赖于体积渲染以进行场景优化。因此,所有这些视图合成方法固有地是场景特定的,再加上全局3D空间坐标。相比之下,我们主张一个范式移动,其中3D表示仅依赖场景颜色和几何形状,学习隐式表示无需地面真相3D几何形状,同时也从任何特定坐标系统中具有重要的独立性。这种区别对于实现可扩展性至关重要,以超越场景指编码所施加的约束。ii)本质上,视图合成更适合作为有条件的生成建模问题,类似于生成图像中的图像[25,60]。随着可用信息的增加,生成的场景变得更加限制,逐渐收敛于地面真相表示。仅给出一组稀疏的参考视图时,所需的模型应提供多个合理的预测,并利用生成表述中的固有随机性,并从自然图像统计信息和从其他图像和对象中学到的语义先验中获取见解。值得注意的是,现有的3D生成模型通常仅支持单个参考视图[20 - 23,44]。我们认为,更理想的生成配方应具有不同级别的输入信息。在这些见解的基础上,我们引入了Eschernet,这是一种图像到图像的条件扩散模型,用于视图合成。Eschernet利用了使用Dot-Product自我注意力的变压器体系结构[51],以捕获参考对目标和目标对目标视图一致性之间的复杂关系。Eschernet中的一个关键创新是相机位置编码(CAPE)的设计,专门代表4个DOF(以对象)和6个DOF相机姿势。这种编码的速率空间结构进入令牌,使模型能够仅基于其相对摄像机的转换来计算查询和密钥之间的自我注意事项。总而言之,Eschernet表现出以下非凡的特征:•一致性:埃舍内特固有地整合了视图的固定性,这要归功于相机位置编码的设计,从而鼓励了对目标对目标和目标视图视图的一致性。
开放式摄取的人类对象相互作用(HOI)的构图与检测以自然语言为指导的新型HOI的问题有关,这对于不认为以人为中心的场景至关重要。然而,先前的零射HOI检测器通常使用相同水平的图形图来模拟距离的HOI,从而在包含具有较大距离的人类对象对的场景中导致次优性能。此外,这些检测器主要依赖类别名称,并概述语言可以提供的丰富上下文信息,这对于捕获通常很少见的开放词汇概念至关重要,而单独使用类别名称的词汇量不佳。在本文中,我们引入了一种新型的端到端开放词汇HOI检测框架,该框架具有有条件的多级解码和细粒度的semantic增强(CMD-SE)(CMD-SE),从而利用了视觉语言模型(VLMS)的潜力。具体来说,我们建议通过在两部分匹配过程中结合软性结合来对具有不同特征图的不同距离的人类对象对进行建模。更重要的是,通过利用大型语言模型(LLM),例如GPT模型,我们利用了他们广泛的世界知识来生成人体部分状态的描述,以进行各种相互作用。然后,我们整合了人体部分的泛化和细粒语义,以证明相互作用的识别。在两个数据集(Swig-hoi和Hico-det)上进行的实验结果表明,我们提出的方法达到了最新的方法,可以实现开放的词汇HOI检测。代码和模型可在https://github.com/ltttpku/cmd-se-版本中使用。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
锂离子电池最近由于其许多优势而成为车辆应用研究的重点。锂离子电池具有比其他二级电池更高的特异性能量,更好的能量密度和更低的自我放电速率,这使其适合电动汽车和混合动力汽车。尽管如此,担心安全性,成本,充电时间和回收利用已阻碍了锂离子电池的商业用法,以进行自动应用。开发有效的电池系统需要在模拟平台上进行精确的电池模型。在这项研究中,电池模型是用MATLAB/SIMULINK内置的。有两个变体可用:一个具有串联的平行电池布置和一个无配置的单个型号。提供并详细说明了所提出的模型的结构。基于测试结果,已验证了开发的电池模型。一个比较表明,创建的模型可以准确预测电流,电压和功率性能。该型号是为Eaton机电电池锂离子18650电池设计的,但据说与其他类型的电池一起使用。模拟考虑了电池的充电状态,电流,电压和电源要求。
估计隐藏状态(解码)的效率算法,用于推断出(隐藏的)状态的最可能的(隐藏)序列的序列,由Viterbi基于动态编程来描述,并且是O(n 2·T)计算复杂性的。
课程结论论文-TCC(本科生) - 里奥格兰德大学北部联邦大学卫生科学中心,药房。natal,RN,2024。指导:Elissa Arantes Ostrosky。
本文解决了生成法定说明(CES)的挑战,涉及识别和修改最少的必要特征,以使分类器对给定图像的预测进行预测。我们提出的方法是反事实e xplanations(Time)的tept to-i mage m odels,是一种基于蒸馏的黑盒反事实技术。与以前的方法不同,此方法仅需要图像及其预测,从而忽略了分类器的结构,参数或梯度的需求。在生成反事实之前,时间将两个不同的偏见引入了文本嵌入的形式稳定扩散:与图像的结构相关联的上下文偏差和类别偏见,与目标分类器学到的类特异性特征相关。学习了这些偏见后,我们发现了使用类预测的类令牌的最佳潜在代码,并使用目标嵌入作为条件,从而产生了符合性的解释。广泛的经验研究证明,即使在黑色盒子设置中运行时,时间也可以产生可比性的解释。
简要说明:国际参考电离层 (IRI) 是由空间研究委员会 (COSPAR) 和国际无线电科学联合会 (URSI) 赞助的一个国际项目。这些组织在 20 世纪 60 年代末成立了一个工作组,根据所有可用的数据源,制定电离层的经验标准模型。该模型的几个稳步改进版本已经发布。IRI 描述了从约 50 公里到约 2000 公里的高度范围内的电子密度、电子温度、离子温度和离子成分。它提供了磁平静条件下非极光电离层的月平均值。主要数据来源是全球电离层网络、强大的非相干散射雷达(Jicamarca、Arecibo、Millstone Hill、Malvern、St. Santin)、ISIS 和 Alouette顶部探测器,以及几颗卫星和火箭上的现场仪器。IRI 每年在特别 IRI 研讨会期间更新(例如,在 COSPAR 大会期间)。计划进行几项扩展,包括离子漂移模型、极光和极地电离层的描述以及对磁暴效应的考虑。
