计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
基于流量的超分辨率(SR)模型在生成高质量图像方面具有令人惊讶的功能。然而,这些方法在图像产生过程中遇到了几个challenges,例如网格伪像,进行倒置和由于固定的Sam固定温度而导致的次优结果。为了克服这些问题,这项工作涉及基于流量SR模型的推断阶段之前学到的条件。此先验是我们所提出的潜在模块预测的潜在代码,该模块在低分辨率图像上进行了条件,然后将流量模型转换为SR图像。我们的框架被签署为与任何基于当代流量的SR模型无缝集成,而无需修改其体系结构或经过预先训练的权重。我们通过广泛的实验和ABLATION分析来评估我们提出的框架的有效性。所提出的框架成功地为所有固有的问题结合了基于流的SR模型,并在各种SR场景中提高了其性能。我们的代码可在以下网址提供:https://github.com/ liyuantsao/flowsr-lp
培训大语言模型(LLM)已成为人工智能进展的核心,数据集,培训前和训练后方法在其性能和可扩展性方面扮演着互补的角色。此博士学位课程探讨了训练这些模型的关键阶段,并强调了数据对下游任务中模型性能的影响。学生将通过全面研究数据集构建,优化技术,缩放定律,培训前策略,合成数据生成以及培训后的改进(例如,进行微调和对齐方式),通过全面的研究构建LLM的理论和实践。该课程将结合理论指导与动手实验相结合。学生将洞悉:##创建高质量,多样化和有效数据集的原则和方法。##¢优化策略,用于大规模模型培训,包括计算效率。##经验缩放定律及其对模型大小和数据集大小的影响。#¢利用合成数据及其在改善概括和鲁棒性中的作用。##训练技术,例如人类反馈(RLHF)的增强学习以及与期望的结果结合。
在班级学习(CIL)方案中,由于阶级的偏见对当前任务的偏见引起的灾难性遗忘者长期以来一直引起了重大挑战。它主要由判别模型的特征引起。随着生成性多模式模型的日益普及,我们将探索用CIL生成的歧视模型代替歧视模型。,从歧视到生成模式过渡需要解决两个关键挑战。主要挑战在于将生成的文本信息转移到不同类别的分类中。在方面,它需要在生成框架内制定CIL的任务。为此,我们提出了一种新颖的生成性多模式模型(GMM)框架,用于类增量学习。我们的方法直接使用改编的生成模型为图像生成Labels。获得详细的文本后,我们使用文本编码器来阐述文本特征,并采用匹配的功能来确定最相似的标签与分类的标签。在传统的CIL设置中,我们在长期序列的任务方案中取得了更好的影响。under少数CIL设置,与所有当前最新方法相比,我们的精度至少提高了14%,而遗忘的遗忘明显较小。我们的代码可在https://github.com/doubleclass/gmm上找到。
大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
通过加强学习(RLHF)将大型语言模型(LLM)与人类偏好保持一致,可以导致奖励黑客,在这种情况下,LLMS在奖励模型(RM)中利用失败(RM)以实现看似高的奖励,而无需实现基本的目标。我们在设计RMS时确定了两个主要挑战以减轻奖励黑客黑客:在RL过程中的分配变化以及人类偏好的不一致。作为解决方案,我们提出了平均奖励模型(温暖),首先对多个RM进行细调,然后在重量空间中平均它们。此策略遵循以下观察结果:在共享相同的预训练时,微调权重保持线性模式。通过平均权重,与传统的预测结合相比,温暖提高了效率,同时提高了分配变化和偏好不一致的鲁棒性的可靠性。使用最佳和RL方法,我们对摘要任务的实验表明,温暖可以提高LLM预测的总体质量和一致性;例如,用温暖调整的策略RL对单个RM进行微调的政策RL的胜利率为79.4%。
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
我们发现,对于七个领域中的六个,我们分析的研究并未为开放基础模型的边际风险提供有说服力的证据:他们不考虑框架中的步骤,例如现有技术或防御能力如何适应边际风险。但是,对于与CSAM相关的风险,Thiel等人。(2023)3进行了完整的分析,该分析显示了未能令人满意解决的开放基础模型的边际风险。4为了提供指导,我们对自动网络安全脆弱性检测和NCII进行了初步的边际风险评估,我们发现,当前开放基础模型的边际风险较低,对于自动化脆弱性检测(部分是由于AI的有效性而用于防御的效率),而开放模型的开放型风险对NCII有可能。
不仅包括隐性偏见或个人歧视,还包括鼓励和助长这种歧视的规则和实践结构。1 结构性种族主义的一个定义是“社会通过相互加强的住房、教育、就业、收入、福利、信贷、媒体、医疗保健和刑事司法系统助长种族歧视的全部方式”。3 衡量种族主义具有挑战性。它不仅可能是主观的,而且还可能带有政治色彩,并且基于难以收集的数据。尽管如此,为了监测变化和设定目标,有一个可衡量的结果至关重要。出于这个原因,出现了许多衡量种族主义的方法,包括感知歧视量表。3
抽象的超分辨率(SR)是一个不当的反问题,其中具有给定低分辨率图像的可行解决方案集的大小非常大。已经提出了许多算法,以在可行的解决方案中找到一种“好”解决方案,这些解决方案在忠诚度和感知质量之间取得了平衡。不幸的是,所有已知方法都会生成伪影和幻觉,同时试图重建高频(HF)图像细节。一个有趣的问题是:模型可以学会将真实图像细节与文物区分开吗?尽管有些重点侧重于细节和影响的分化,但这是一个非常具有挑战性的问题,并且尚待找到满意的解决方案。本文表明,与RGB域或傅立叶空间损耗相比,使用小波域损失功能训练基于GAN的SR模型可以更好地学习真正的HF细节与伪像的表征。尽管以前在文献中已经使用了小波域损失,但在SR任务的背景下没有使用它们。更具体地说,我们仅在HF小波子带上而不是在RGB图像上训练鉴别器,并且发电机受到小波子带的忠诚度损失的训练,以使其对结构的规模和方向敏感。广泛的实验结果表明,我们的模型根据多种措施和视觉评估实现了更好的感知延续权权衡。