在计算机图形学中创建高质量的材质是一项具有挑战性且耗时的任务,需要很高的专业知识。为了简化这个过程,我们引入了 MatFuse,这是一种统一的方法,它利用扩散模型的生成能力来创建和编辑 3D 材质。我们的方法整合了多种条件来源,包括调色板、草图、文本和图片,增强了创造可能性并对材质合成进行了细粒度的控制。此外,MatFuse 通过多编码器压缩模型的潜在操作实现了地图级材质编辑功能,该模型可以学习每个地图的解开的潜在表示。我们在多种条件设置下展示了 MatFuse 的有效性,并探索了材质编辑的潜力。最后,我们根据 CLIP-IQA 和 FID 分数定量评估生成材质的质量,并通过开展用户研究定性评估生成材质的质量。用于训练 MatFuse 的源代码和补充材料可在 https://gvecchio.com/matfuse 上公开获取。
简要说明:国际参考电离层 (IRI) 是由空间研究委员会 (COSPAR) 和国际无线电科学联合会 (URSI) 赞助的一个国际项目。这些组织在 20 世纪 60 年代末成立了一个工作组,根据所有可用的数据源,制定电离层的经验标准模型。该模型的几个稳步改进版本已经发布。IRI 描述了从约 50 公里到约 2000 公里的高度范围内的电子密度、电子温度、离子温度和离子成分。它提供了磁平静条件下非极光电离层的月平均值。主要数据来源是全球电离层网络、强大的非相干散射雷达(Jicamarca、Arecibo、Millstone Hill、Malvern、St. Santin)、ISIS 和 Alouette顶部探测器,以及几颗卫星和火箭上的现场仪器。IRI 每年在特别 IRI 研讨会期间更新(例如,在 COSPAR 大会期间)。计划进行几项扩展,包括离子漂移模型、极光和极地电离层的描述以及对磁暴效应的考虑。
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象形状简单,提供有限的创造性实验机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。
摘要算法偏见是教育环境中机器学习模型中的主要问题。但是,它尚未在亚洲学习环境中进行彻底研究,并且只有有限的工作才考虑了基于区域(亚国家)背景的算法偏见。作为解决这一差距的一步,本文研究了菲律宾一所大型大学的5,986名学生的人口,并根据学生的区域背景调查了算法偏见。大学在广泛领域的在线课程中使用了画布学习管理系统(LMS)。在三个学期的典范上,我们收集了4870万个学生在画布中活动的日志记录。我们使用这些日志来训练从LMS活动中预测学生成绩的二进制分类模型。表现最佳的模型达到0.75,加权F1得分为0.79。随后,我们根据学生区域检查了偏见的数据。使用三个指标进行评估:AUC,加权F1得分和MADD在所有人口组中均显示出一致的结果。因此,在年级预测中对特定学生群体没有观察到不公平。
文本到图像生成模型正变得越来越流行,公众可以访问。由于这些模型看到大规模的部署,因此有必要深入研究其安全性和公平性,以免消散和永久存在任何形式的偏见。然而,存在的工作重点是检测封闭的偏见集,定义了先验的偏见,将研究限制为众所周知的概念。在本文中,我们解决了出现OpenBias的文本到图像生成模型中开放式偏见检测的挑战,该模型是一条新管道,该管道可识别和量化双质量的严重性,而无需访问任何预编译的集合。OpenBias有三个阶段。在第一阶段,我们利用大型语言模型(LLM)提出偏见,给定一组字幕。其次,目标生成模型使用相同的字幕绘制图像。最后,一个视觉问题回答模型认识到了先前提出的偏见的存在和范围。我们研究了稳定扩散1.5、2和XL强调新偏见的稳定扩散,从未研究过。通过定量实验,我们证明了OpenBias与当前的封闭式偏见检测方法和人类判断一致。
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
当前的感知模型在很大程度上取决于资源密集型数据集,从而促使需要创新。通过从各种注释中构造图像输入来利用综合数据的最新进展,证明对下游任务有益。虽然先前的方法已单独解决了生成和感知模型,但首次降低了两者的谐调,从而解决了为感知模型生成有效数据的挑战。通过感知模型增强图像发生,我们引入了感知感知损失(P.A.损失)通过细分,提高质量和可控性。为了提高特定感知模型的性能,我们的方法通过提取和利用感知意识来定制数据(P.A.attr)在一代中。对象检测任务的实验结果突出显示了detDiffusion的统治性能,建立了布局引导的新最新作品。此外,降低的图像合成可以有效地增强训练数据,从而显着增强下游检测性能。
摘要◥目的:大约20%的RAS野生型转移性结直肠癌(MCRC)的患者经历了对抗EGFR抗体西素单抗的客观反应,但很少实现消除疾病。肿瘤收缩的程度与长期结局相关。我们的目的是找到合理组合,通过破坏对抗凋亡分子的适应性依赖性(BCL2,BCL-XL,MCL1)来增强西妥昔单抗的效率。实验设计:实验是在患者衍生的异种移植物(PDX)和类器官(PDXO)中进行的。凋亡的底漆。促凋亡和抗凋亡蛋白复合物。通过caspase激活PDXOS和监测PDX生长来评估组合疗法的影响。结果:由314个PDX队列中的人口试验,由许多患者确定,确定46个模型(14.6%),具有明显的
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态