摘要。准确估算了弹性模量(MR)的弹性子级土壤中,对于设计既可靠且对环境友好的柔性路面系统的设计至关重要。MR显着影响人行道的结构完整性,尤其是在具有不同负荷和气候条件的丘陵地区。这项研究收集了2813个数据点,从预先研究结果中创建了准确的预测模型。选择了梯度增强(GB)机器学习(ML)方法以预测压实的亚级土壤的MR。使用统计分析评估了GB模型的准确性和预测性能,其中包括典型指标,例如均方根误差,平均绝对误差和相对平方误差。用于培训和测试数据集的R²值为0.96和0.94的模型。RMSE的训练是5 MPA,测试为7.48 MPa,而MAE为3.18 MPa和5.55 MPa。这些结果突出了GB在预测土壤MR中的潜力,从而支持了更准确,更有效的MR预测的发展,最终减少了时间和成本。
摘要 - 高速和功率电路的设计复杂性增加到更高的操作频率。因此,此手稿概述了如何使用两个可切换除法比率为4和5的双重模数预分量器设计和优化完全差异的发射极耦合逻辑(ECL)门。第一个预拉剂被优化为最高的运行频率,分别为5和4的分别为142 GHz,甚至166 GHz。此外,另一位预拉剂已针对广泛使用的80 GHz频段进行了优化,该频段已由汽车行业大量促进,并且该域中有大量组件。可以在具有较宽的除法比率范围的完全可编程频率分隔线中使用两个预分量员。作为对具有出色噪声性能的频率转换设备的添加期噪声的测量非常具有挑战性,因此在理论上进行了讨论,并实际上进行了。在100 Hz的集成极限内,测得的抖动在500 AS和1.9 FS之间,最高为1 MHz偏移频率。
键由玻璃的磷酸盐成分贡献。结果,Inaba等人对Young的模量的预测。[3]比依赖MM模型中使用的氧化物解离能的值更接近测量值,特别是对于磷酸盐玻璃。在最近对Okamoto等人的Zn-SN-磷酸玻璃机械性能的研究中。[4],通过使用金属氧键距离和金属离子配位数(由X射线和中子衍射研究确定[5-7])来修改Inaba模型[5-7],以钙化离子堆积分数(V P)。此外,Okamoto等。修改了Inaba等人使用的解离能。与四面体相比,与邻近的p -tetrahedra相比,通过一个(q 1)或两个(q 2)布里牛根键相比,要考虑不同的协调环境,特别是对于SN 2 + -Polyhedra,并说明了孤立的PO 4 3-(Q 0)四面体的更大刚度。Okamoto的单个氧化物解离能和体积的新值改善了对弹性模量和维克斯硬度的预测,这些弹性模量和维克硬度的硬度是几个系列X Zno-(67 -x)Sno -33p 2 O 5玻璃,具有有用的光子末端特性的组合物[4]。最近,Shi等人。[8]通过指出构成氧化物玻璃结构的金属多层的有效体积并不是构成多面体的离子半径的总和,但还必须在该多面体中包括无知的空间。通过更换
模块编号 # 08 讲座编号 # 40 岩体模量的确定:径向顶升试验和古德曼千斤顶试验
1986 年 AASHTO 路面结构设计指南将路面的弹性模量纳入了该程序。该参数类似于用于材料行为线性弹性模型的两个常数之一。当前的主要研究工作正在探索包含模量等参数的机械模型,这些模型可能会在未来取代 AASHTO 指南。目前,德克萨斯州运输部并不定期进行弹性模量测试。本研究开发了几种测量沥青混凝土模量的方法,使该部门能够执行此测试,以支持设计活动和无损现场测试的验证。尝试了一种生产测试技术,以及可以轻松修改的技术,以纳入面向机械设计方法的新研究成果和程序。
工作计划 已经开展了一项广泛的实验计划,使用了六种不同类型的商用仪器、五种压头几何形状、四种不同的涂层系统和三种散装参考材料。该项目已确定硬度和模量值对以下因素的敏感性:仪器校准和环境;压头几何校准;详细加载循环的仪器参数;以及涂层类型和厚度等材料效应。已评估选定的模型,以根据测量的复合压痕响应计算涂层特性。已对这些模型进行了比较、测试和验证,并确定了它们的适用范围。验证包括将模型响应与实验确定的压痕响应进行比较。