摘要 - SAMM(太阳活动MOF监视器)是一种基于地面的机器人仪器,已开发用于研究和不断监测太阳的磁性,重点是活动区域(ARS)。这些区域的特征是复杂的磁性结构,可能导致爆炸性事件通常与空间环境中大量粒子和物质弹出有关。与地球磁层相互作用时,它们可以对我们的基础设施(卫星,导航系统)和地面(发电厂和电网)中的基础设施构成威胁。基于钠(Na)和钾(K)磁铁光学过滤器(MOFS),SAMM提供了“层析成像”的视图,以在太阳能的不同高度下提供高节奏磁力图和多普勒格拉姆的磁性结构,从而提供了一个独特的数据集高度,从而提供了一个独特的数据集,以推动当前的空间范围的天气范围内的范围较高的空间范围。能够预先预测这些事件(甚至几个小时)是制定缓解策略的基本任务,以减少对地球上重要基础设施的潜在灾难性影响。在这种情况下,SAMM天文台已经意识到可以在全球网络中复制的“节点”,目的是持续覆盖太阳状况。该项目最初是由意大利经济发展部(MISE)在2015年通过软贷款赠款资助的,其发展和运营是在INAF - 罗马与那不勒斯天文学观测站与意大利小型企业(SME)Avalon Instruments的科学合作中进行的。经过三年的发展,SAMM处于调试阶段。在本文中,我们提出了最终的仪器描述以及第一光图像。
摘要:纳米材料作为润滑油添加剂引起了极大的关注,因为它们具有可设计的组成和结构,合适的机械性能和可调的表面功能。但是,纳米材料和碱基油之间的兼容性不佳限制了其进一步的应用。在这项工作中,我们证明了油溶性聚(LAURYL甲基丙烯酸酯)(PLMA)刷刷的金属有机框架纳米颗粒(Nanomofs)是润滑油添加剂,可实现有效的摩擦减少和抗磨损性能。大型原始子,该聚合将其配位移植到UIO-67纳米颗粒的表面上。然后,通过表面启动的原子传递自由基聚合化在大型引起剂修饰的UIO-67上生长PLMA刷,从而极大地改善了UIO-67纳米颗粒的亲脂性特性,并显着增强了非极性溶剂溶液和碱基机油中胶体稳定性和长期分散性。通过将UIO-67@PLMA纳米颗粒添加到500 sn的基础油中,摩擦系数和磨损量减少了45.3%和75.5%,因为它们的出色机械性能和油的散发性。此外,UIO-67@PLMA添加剂的载荷能力从100 n大大增加到500 N,即使在65 Hz的高摩擦频率和120°C的高温下也证明了它们的出色摩擦学性能。我们的工作强调了油溶性聚合物刷官能化纳米型,以高效润滑添加剂。关键字:MOFS;聚合物刷;表面修饰;摩擦学特性;减少摩擦;反衣
摘要:对层堆叠的二维共轭金属 - 有机框架(2D C- MOF)的原子结构的了解是建立其结构 - 性质相关性的必要先决条件。为此,原子分辨率成像通常是选择的方法。在本文中,我们可以更好地理解有助于电子束弹性的主要特性以及2D C-MOF的高分辨率TEM图像中可实现的分辨率,其中包括化学组成,密度和C-MOF结构的电导率。结果,在所考虑的结构的最稳定的2D c-MOF中,在80 kV的加速电压下,在体和色素异常校正的tem的加速电压下,取下了0.95的。使用详细的从头算分子动力学计算来解释了通过与电子束的弹性相互作用在Cu 3(BHT)中诱导的复杂损伤机制。实验性和计算的敲入伤害阈值非常吻合。关键字:梁损伤,金属有机框架,高分辨率传输电子显微镜,结构剪裁,从头开始分子动力学
摘要 与通过强配位或共价键组装的金属有机骨架(MOF)和共价有机骨架(COF)不同,基于非共价相互作用的新型多孔有机分子材料由于其结构单元简单、超分子组装的灵活性而备受关注。非共价π-堆叠有机骨架(πOF)是多孔材料的一个子类,由有机构件通过π-π相互作用自组装形成的晶体网络组成。π-π相互作用和π-离域超分子骨架的柔性、可逆和导电特性赋予πOF有利的属性,包括溶液可加工性、自修复能力、显著的载流子迁移率和优异的稳定性。这些特性使πOF成为气体分离、分子结构测定和电催化等应用的理想选择。自2020年该概念提出以来,πOF的化学和应用都取得了重大进展。未来的研究应侧重于扩大其结构多样性和探索新的应用,特别是在传统多孔材料遇到局限性的领域。[1, 2]。
摘要:对层堆叠的二维共轭金属 - 有机框架(2D C- MOF)的原子结构的了解是建立其结构 - 性质相关性的必要先决条件。为此,原子分辨率成像通常是选择的方法。在本文中,我们可以更好地理解有助于电子束弹性的主要特性以及2D C-MOF的高分辨率TEM图像中可实现的分辨率,其中包括化学组成,密度和C-MOF结构的电导率。结果,在所考虑的结构的最稳定的2D c-MOF中,在80 kV的加速电压下,在体和色素异常校正的tem的加速电压下,取下了0.95的。使用详细的从头算分子动力学计算来解释了通过与电子束的弹性相互作用在Cu 3(BHT)中诱导的复杂损伤机制。实验性和计算的敲入伤害阈值非常吻合。关键字:梁损伤,金属有机框架,高分辨率传输电子显微镜,结构剪裁,从头开始分子动力学
金属有机骨架 (MOF) 是具有独特吸附性能的微孔结晶配位聚合物。它们在催化、1 气体存储、2 分离 3 和微电子领域显示出了巨大的潜力。4 作为传感器涂层,它们可以将分析物富集在传感器表面,在某些情况下是选择性的。5,6 然而,由于缺乏简便和通用的沉积和图案化技术,它们的集成受到阻碍。7,8 基于溶液的 MOF 沉积技术,例如化学溶液生长或液相外延,可能会导致腐蚀或污染。4 化学气相沉积可以避免这些风险,9 但受到金属前体的反应性和连接剂的挥发性的限制。已经展示了多种用于 MOF 涂层的图案化方法。减法方法(例如剥离图案化 9,10 或无抗蚀剂直接光刻 11)涉及修改整个基板,这增加了残留物污染的风险。相比之下,加法图案化技术(例如选择性生长 12、微接触 12,13 和喷墨打印 14,15)仅将目标材料沉积在基板的有限区域上。喷墨打印特别
本文介绍了基于金属有机骨架 (MOF) 晶体表征的孔径分布分析,这些金属有机骨架具有分级孔系统 DUT-32、DUT-75、UMCM-1 和 NU-1000,并利用它来了解这些独特孔结构中的气体吸附。统计分析用于有效地将孔隙空间划分为由孔径标记的不同区域。在模拟 87 K 氩气吸附期间,该孔描述用于发现吸附质相对于不同孔隙的位置。为了进一步研究吸附行为,开发了一种聚类孔隙环境以定位孔隙中心的方法。这些孔隙中心用于观察孔隙内气体的分布,从孔隙中心的独特视角描述填充事件期间的吸附质位置。本文介绍的方法提供了有关孔隙结构和吸附特性的无与伦比的信息,这些信息无法通过现有方法获得,现在可以应用于新材料以揭示新的吸附过程。
摘要:薄膜上和晶体内部的激光干扰图案是今天创建用于光学数据处理所需模式的功能强大的工具。在这里,我们分别通过水解吸和热分解过程在金属有机框架(MOF)薄膜上表现出可逆和不可逆的激光干扰。已经实现了不可逆的干扰模式,其带有高达5 µm的条带的不可逆转的干扰模式已经实现,并且使用共焦拉曼和反射光谱以及原子力显微镜表征了其形态。我们透露,将干扰最大值之间的距离从10.5降低到MOF的5 µm记录,使不可逆模式的表面粗糙度增加了10倍。另一方面,可逆的激光模式提供了可变光学对比度的完全无损的效果。获得的实验结果为使用MOF晶体作为光敏材料的模板图中所需模式的模板图中的光敏材料开放了前景。
TCS/24/08 - 通过金属有机骨架以刺激响应方式靶向递送抗衰老药物 年龄相关性健康日益影响着老龄人口的寿命和生活质量。临床模型表明,针对会导致与年龄相关的疾病的老龄细胞(衰老细胞)的药物可以减轻衰老的影响,但这些“抗衰老”药物往往具有不良副作用或疗效不佳,因为它们并非仅针对衰老细胞。该提案旨在使用药物载体——称为金属有机骨架 (MOF) 的多孔纳米粒子——将抗衰老药物特异性地递送到衰老细胞,同时避开健康细胞。我们将在 MOF 纳米粒子表面加入化学机制,这些纳米粒子将被衰老细胞过度表达的特定酶降解,确保抗衰老药物仅释放到衰老细胞中。这种选择性释放将增强功效,降低脱靶效应,并为针对与年龄相关的疾病的抗衰老药物的更大规模的靶向输送奠定平台。
项目 C4:小分子催化转化为增值产品 PI:Sara Thoi 教授,化学 项目描述:该项目专注于合成和表征新型金属催化剂,用于激活和转化小分子,如二氧化碳(CO 2 )、氮(N 2 )、硝酸盐(NO 3 - )和其他丰富化合物。其中一个例子是开发金属有机骨架 (MOF) 将 N 2 转化为氨(NH 3 ),氨是一种重要的肥料,也是工业和制药化学品的氮前体。 REU 学生的角色: REU 学生将合成和表征各种含有地球丰富金属位点的催化剂,以激活小分子。他们将学习如何进行电化学实验,包括循环伏安法、计时电流法和原位振动光谱。 REU 学生将把催化剂的各种特性(结构、孔隙率、功能组、金属特性)与其催化性能(选择性和活性)关联起来。这些结构-功能关系将阐明机械原理,并为进一步的催化剂设计提供路线图。首选背景和技能:• 普通化学 • 电化学 • 合成