摘要:在文献中已经多次研究了环氧树脂和环氧基质复合材料的湿热衰老。模型来表示材料的扩散行为。用于可逆的扩散,给给双,fick和Carter和Kibler模型。已确定了许多相关的参数。通过统计分析的本综述的目标是确认或授权这些相关性,以强调其他相关性(如果存在),并确定最重要的研究。本研究的重点是Fick,Dual -Fick和Carter和Kibler模型的参数。为此,对从文献中描述的个体提取的数据进行了统计分析。框图和PCA分析被选择。 根据研究中选择的不同定性参数而明显差异。 此外,在文献中已经观察到的定量变量已经观察到的相关性。 另一方面,出现差异可能表明所使用的模型不适合某些材料。框图和PCA分析被选择。根据研究中选择的不同定性参数而明显差异。此外,在文献中已经观察到的定量变量已经观察到的相关性。另一方面,出现差异可能表明所使用的模型不适合某些材料。
摘要:在粒子理论计算、数值模型和积云参数化中,通常假设湿静能 (MSE) 绝热守恒。然而,由于假设了流体静力平衡,MSE 的绝热守恒只是近似的。这里评估了两个替代变量:MSE 2 IB 和 MSE 1 KE,其中 IB 是浮力 (B) 的路径积分,KE 是动能。这两个变量都放宽了流体静力假设,并且比 MSE 更精确地守恒。本文量化了在无序和有序深对流的大涡模拟 (LES) 中假设上述变量守恒而导致的误差。结果表明,MSE 2 IB 和 MSE 1 KE 都比单独的 MSE 更好地预测沿轨迹的量。 MSE 2 IB 在孤立深对流中守恒较好,而 MSE 2 IB 和 MSE 1 KE 在飑线模拟中表现相当。这些结果可以通过飑线和孤立对流的压力扰动行为之间的差异来解释。当假设 MSE 2 IB 绝热守恒时,上升气流 B 诊断中的误差普遍最小化,但只有当考虑热容量的湿度依赖性和潜热的温度依赖性时才会如此。当使用不太准确的潜热和热容量公式时,由于补偿误差,MSE 2 IB 产生的 B 预测比 MSE 更差。我们的结果表明,各种应用都将受益于使用 MSE 2 IB 或 MSE 1 KE 代替具有适当公式化的热容量和潜热的 MSE。
摘要:这项研究使用先进的数值和诊断方法来评估ECMWF(ERA5)与观察到的大气顶部(TOA)能量流量(TOA)能量流相结合的第五次重大全球重新分析,1985- 2018年期间。我们使用质量平衡的数据评估子午线以及海洋能量运输,并进行内部一致性检查。此外,还检查了ERA5中的水分和质量预算,并将使用ERA-Interim以及基于观察的估计值进行比较。结果表明,与ERA-Interim(4.74 6 0.09 PW)相比,ERA5(4.58 6 0.07 PW)在ERA5(4.58 6 0.07 PW)的峰值峰值(4.74 6 0.09 PW)较弱,其中ERA5的较高空间和时间分辨率可以作为可能的原因。ERA5中的海洋与能源运输至少从2000年开始(; 2.5 PW)是可靠的,因此,净弓形虫和横向能量在陆地上的不平衡处于陆上的顺序; 1 W m 2 2。旋转和旋转效应通常在ERA5中较小且暂时的变化较小。对水分预算的评估表明,海洋水分的传输和参数化的淡水流量在ERA5吻合良好,而ERA-Interim中存在较大的不一分子。总的来说,从ERA5得出的预算的质量显然要比ERA-Interim的估计值更好。仍然有一些特别敏感的预算数量(例如,降水,蒸发和海洋能源运输)显示出明显的不均匀性,尤其是在1990年代后期,这需要进一步研究,需要在年际可变性和趋势研究中考虑。
早期在线版本:该初步版本已被接受在《气候杂志》中出版,可以完全引用,并且已被分配给Doi,最终的排版复制文章将在发布时在上述DOI上取代EOR。©20神学会
过程传感技术 (PST) 提供无与伦比的仪器、分析仪和传感器套件,用于要求严苛的终端市场的精密测量和监控。这些市场涵盖制药/生命科学、特种气体、半导体、石油和天然气、石化产品和电力、气体检测、食品和饮料以及楼宇自动化。使用我们的产品,客户每年可通过提高其工艺中的能源效率和减少工艺中断节省数百万美元。食品、药品、半导体和数千种制成品的质量取决于在生产、储存和运输过程中对湿度、氧气、CO、N 2 、H 2 、碳氢化合物、压力或 CO 2 等关键参数的可靠测量。我们的产品直接提高了客户的盈利能力,并帮助他们遵守严格的行业法规。我们拥有并制造大多数产品中使用的传感技术。这使我们能够保持强大的领导地位,并将我们的创新利益传递给我们的客户。
过程传感技术 (PST) 提供无与伦比的仪器、分析仪和传感器套件,用于要求严格的终端市场的精密测量和监控。这些市场包括制药/生命科学、特种气体、半导体、石油和天然气、石化产品和电力、气体检测、食品和饮料以及楼宇自动化。使用我们的产品,客户每年可节省数百万美元,因为其工艺中提高了能源效率,减少了工艺中断。食品、药品、半导体和数千种制成品的质量取决于在生产、储存和运输过程中对湿度、氧气、CO、N 2 、H 2 、碳氢化合物、压力或 CO 2 等关键参数的可靠测量。我们的产品直接提高了客户的盈利能力,并帮助他们遵守严格的行业法规。我们拥有并制造大多数产品中使用的传感技术。这使我们能够保持强大的领导地位,并将我们的创新优势传递给我们的客户。
(STM),SEM,TEM 2。元素表征;),x射线衍射计(XRD),3。光谱镜;卢瑟福反向散射光谱镜,傅立叶变换
1.1 课程摘要 学校 工程系 制造、工业与纺织工程 联系方式 hodmit@mu.ac.ke 校区 主校区 典型全日制 3 年 奖励最低学分 90 个奖励 材料与纺织工程博士 1.2 课程描述 材料与纺织工程博士课程提供两个专业领域的高级培训,即材料工程和纺织工程。该课程旨在让学习者掌握所选学习领域的知识、能力和技能,并鼓励智力和个人发展。该课程培养具有工业能力、设计和研究技能的毕业生,使他们能够解决工业问题。此外,该培训提供了先进坚实的学术基础,以支持所有其他级别的研究和学习,包括硕士、学士、文凭和证书。 1.3 课程目标 该课程旨在:
定向流体转运对自然界的许多物理过程具有重要意义。如何通过人造材料操纵这一过程仍然是科学家的关键挑战。在这项研究中,Janus织物是通过电钉在螺栓或纱布上的一层聚偏氟化物(PVDF)纳米纤维来构建的。Janus织物两侧的化学组成,形态和表面润湿性的特征是红外光谱,扫描电子显微镜(SEM)和接触角度测量。通过控制PVDF静电纺丝时间,测量了具有不同PVDF厚度的Janus织物的最大静水站。发现PVDF/Gauze对单向水转运更有利,并且水分也可以从疏水侧转移到脑电侧。凭借便捷制备,低成本和单向水/水分传输的优势,可以将本研究中准备的Janus织物用于水分间隔,湿度转移和从空中收集水。