• 第 17.5.2 节“修复隐藏霉菌的必要性” 2019 年,大家一致认为应有效清理或去除隐藏霉菌。霉菌是一种破坏,如果将来发生潮湿事件,隐藏霉菌的区域更容易再次生长。此外,许多政府机构和专业协会都将墙体空腔的生长视为潜在的健康问题,并建议在修复过程中不要忽视墙体空腔。 • 第 17.5.4 节“隐藏霉菌生长造成的财产损失” 无论潜在的健康风险和室内暴露水平如何,隐藏霉菌的生长都意味着建筑材料的分解。防潮层可能会被破坏。防火石膏板组件的完整性可能会受到损害。结构部件可能会退化。隐藏霉菌的生长表明存在隐藏的湿度问题,可能会导致霉菌继续生长。即使纠正了湿度源,与清洁表面相比,先前被霉菌侵染且残留孢子丰富的表面在较低湿度水平下更容易反复生长。美国国家职业安全与健康研究所出版物“NIOSH ALERT”包含以下信息:
场地条件和运营目标都会影响 GCS 的设计。场地条件(例如垃圾填埋场的几何形状、湿度、压实率、垃圾类型、垃圾深度、覆盖土壤的渗透性和最终覆盖层)都会影响 GCS 的设计。垃圾中的湿度越大,LFG 的生成速度就越快,峰值 LFG 生成率就越高。更快的 LFG 生成率还会导致垃圾沉降速度更快,这可能会对收集器造成损坏,可能需要对其进行评估并可能进行更换。垃圾中的液体可能会减少垃圾中的孔隙空间,从而降低 LFG 移动到 LFG 提取井的能力。因此,湿度较高的垃圾填埋场对单个收集器的有效影响半径(或影响区域)可能较小,并且可能需要更多的收集器才能覆盖相同的面积。相反,一些场地选择增加湿度以促进分解,这会增加 LFG 的生成,但可能会由于额外的井、增加的沉降和更大的集管尺寸而增加 GCS 的运营成本。
特定地板产品是否适应特定的工地条件和安装方法。2 在适当的工地条件、湿度测试结果和基材准备都已满足之后。有关可接受的工地条件,请参阅“使用说明”。使用前,请阅读所有说明和材料安全数据表。如需技术建议:请致电 Bona 美国,电话:800-872-5515 适应和工地条件在安装地板之前、安装期间和安装后 72 小时内,建筑气候控制系统必须运行在 65ºF–95 ºF 的温度和 65% 的最大相对湿度下。理想条件是 65-70 o F 和 45-55% RH。让 Bona QUANTUM™ R851 胶粘剂适应安装的室温,通常需要过夜。湿度测试:对于混凝土板,使用标准应用,按照 ASTM 测试方法 F 1869 使用无水氯化钙测量混凝土底层地板湿气排放率 (MVER) 的测试和/或 F 2170 使用原位探头确定混凝土地板板中相对湿度的测试方法进行湿度测试。在继续操作之前,请联系 ASTM International 获取测试方法的副本。使用 ASTM F 1869(氯化钙测试)的 MVER 不得超过 12 磅/24 小时/1000 平方英尺。使用 ASTM F 2170(RH 探头测试)的相对湿度不得超过 85%。如果 MVER 读数超过 12 磅或 85% 但小于 18 磅。或 95%,使用 Bona R540 防潮屏障/底漆(请参阅标签了解详细说明)或使用防潮屏障 Plus (MBP) 夹式抹刀和任何 Bona 抹刀,以
我们首先关注蒙大拿州气候变化的两个主要驱动因素:温度和降水。蒙大拿州的总体趋势与全国趋势一样,是气温将升高。降水模式尚不明确,但总体而言,蒙大拿州的降水量将增加。暖空气比冷空气能容纳更多的水分,因此冬季和春季有更多的水分被带入该州,而夏季减少的水分并不能抵消这一变化。预计到本世纪中叶,蒙大拿州的气温将上升至少 6°F。冬季和夏季的气温升幅更大,预计 8 月的变化最大。秋季到春季将更温暖、更潮湿,春季和秋季将来得更早,而夏季将更炎热、更干燥。
nano R4 冷冻式空气干燥机专为可靠性、性能和低拥有成本而设计。它们具有低压降不锈钢热交换器、不锈钢水分分离器、环保制冷剂、用于精确控制的 TXV 以及简单但功能强大的电子控制器。R4 让您高枕无忧,因为下游设备将受到保护,免受有害水分污染。
Bona Quantum T 是一种硬弹性湿气固化硅烷基粘合剂,适用于实木地板,包括覆盖层、镶木地板、块状地板和工程木地板。其革命性的钛技术带来了快速交联作用和高初始粘合强度。Bona Quantum T 的粘度略高于同类产品,但“绿色”抓力更高。Bona Quantum T 已针对 Bona OptiSpread UX 应用系统进行了优化。Bona Quantum T 可以像传统粘合剂一样承受木地板膨胀时产生的推力,同时具有较低的抗收缩性。这意味着木材和固定木地板的基材之间的张力会降低,从而形成更稳定的地板。当湿度低于 95% 时,可以使用 Bona Trowel Plus 涂抹器将 Bona Quantum T 用作防潮层和粘合剂应用的组合;这可确保完全覆盖混凝土地板表面,同时保持肋状结构。或者,当需要防潮层系统时,可以使用 Bona R540。 • 强大的钛交联
关于土壤水分 - 预应反馈的迹象的争论仍然开放。一方面,使用全球粗分辨率气候模型的研究发现了强烈的积极反馈。但是,这样的模型不能明确表示对流。另一方面,使用KM规模的区域气候模型和明确对流的研究报告了负反馈。然而,在这种模型中规定了大规模的循环。这项研究使用具有明确对流的全局,耦合的模拟进行了重新审视土壤水分 - 沉淀反馈,并将结果与粗分辨率模拟与参数化对流进行了比较。我们发现,大多数要点的显着差异,反馈较弱且占据显式对流的负面差异。与粗分辨率模型相比,在存在土壤湿度异质性的情况下,在潮湿的方向上更经常在潮湿的状态下,在土壤水分异质性的情况下触发对流的模型。进一步的分析表明,不仅土壤水分和蒸散量之间的反馈,而且蒸散量和降水之间的反馈也较弱,与观察结果更好地一致。我们的发现表明,粗分辨率模型可能不太适合研究土地上气候变化的各个方面,例如干旱和热浪的变化。
这些表格仅适用于干燥空气。水分的影响将改变温度数值,并在一定程度上影响压力,但可以从表格中得出许多有用的推论。例如,通过研究表 1 可以看出,如果干燥空气的温度升高约 500 度,其体积将增加一倍,相反,如果体积保持不变,温度升高约 500 度将使压力增加一倍。水分的增加有助于增加这些数字,因为水分会增加空气的比热和导热能力。空气压缩和膨胀的热结果由附图 (图 1) 所示。空气的温度和体积在不同压缩阶段均有显示。该图最简单的应用是给出表压;表示在空气的不同点
自从我加入电气工程系Jamia Millia Islia,中央大学(NIRF等级3,NAAC等级:A ++)以来,我一直致力于自己在教学,研究,奖学金和服务方面卓越成就。在我的学术创新和高质量的研究的帮助下,我在全国和有意地建立了自己。我的所有学位均来自政府教育机构,我所有的研究工作也仅基于印度。我是传感器和仪器领域中最有效,最勤奋的中载研究人员之一,从我的出版记录可以看出。I have a strong track records in the field of capacitive sensors, conductive sensors, surface acoustics wave sensors for different transduction applications including moisture in ppm, relative humidity in %RH, pressure measurement, temperature measurement, liquid level, hydration monitoring on concrete structure, automatic dispensing of microdroplet, metal particles detection in lubricating oil, dissolved gas analysis and, moisture in transformer oil, and in SF6气体,食品谷物的水分测量,饮料质量,有毒气体,有机蒸气等我还具有开发有效接口电路的记录记录,以实现完美和不完美的电容传感器。由于我在传感器和仪器领域的贡献,我成为了IEEE传感器期刊和IEEE仪器的局部编辑器(TE)之一。我对IEEE传感器杂志的贡献非常公认,因为我在2017年和2018年获得了IEEE传感器委员会的最佳表现AE奖,这是IEEE Intrum Intrum和Meas的杰出奖项。社会。The excellence of my research has been demonstrated by my development of innovative different types capacitive sensors for industrial applications, received of several research grants, authorship of more than 180 high quality publication including eleven scholarly book chapters, four edited books, one guest editor of special issue of a journal, filing four patents, one patent (granted), ninety high rank journal papers, invitation to seminar lectures by reputed Universities and机构和国家和国际研究合作的建立。我的大多数日记论文都发表在IEEE,IET,ELSVIER,AIP,SPRINGERS,TAYLOR和FRANCIS,美国科学出版商等高质量期刊上。所有文章中的研究仅在我细致的监督下和印度进行。
土壤水分和植被生长是干旱事件最直接、最重要的指标,因此,了解植被和土壤的光谱行为对于干旱评估至关重要。最近,Ghulam 等人 [Ghulam, A., Qin, Q., Zhan, Z., 2006. Designing of the vertical dirt index. Environmental Geology, doi:10.1007/s00254-006-0544-2 (accessed March 8, 2007).] 建立了垂直干旱指数 (PDI),该指数基于对 NIR-Red 光谱空间中土壤水分空间分布特征的广泛分析。本文提出了一种改进的干旱监测方法,即改进的垂直干旱指数 (MPDI),引入了植被分数,同时考虑了土壤水分和植被生长。为了验证本文提出的干旱指数的有效性,利用不同时刻、不同干旱条件下不同生态系统的增强型专题制图仪 (ETM+) 和中分辨率成像光谱仪 (MODIS) 影像,计算了地面测点的 PDI 和 MPDI。然后将 PDI 和 MPDI 与通过卫星同步进行的田间测量获得的现场干旱指数进行比较,该指数包括不同土壤深度的土壤总含水量、田间持水量、萎蔫系数等。从结果可以看出,PDI 和 MPDI 与现场干旱值高度一致,相关性最高 ( R 2 =0.