CRISPR 基因座(源自英文“Clustered Regularly Interspaced Palindromic Repeats”,缩写为 CRISPR)于 1987 年由 Ishino 及其同事首次描述,当时他们正在研究大肠杆菌中参与碱性磷酸酶同工酶相互转化的 iap 基因。当时,由于DNA序列数据不足,技术也不像今天先进,研究人员无法预测这些序列的生物学功能。1993 年,CRISPR 基因座也在古菌(Haloferax mediterranei)中被观察到,随后在许多其他细菌的基因组中也被证实。在两个生命领域中同一基因位点的保存表明该区域很可能具有一定的重要性。然而,直到 2005 年,Mojica 及其合作者以及 Pourcel 及其合作者才独立报道间隔区中包含的序列与噬菌体、原噬菌体和质粒中发现的序列同源。以此方式证明,外源生物无法感染在 CRISPR 基因座中具有与
1993年弗朗西斯科·莫吉卡(Francisco Mojica)等。1,5)发现了现在被称为“定期散布短的短质体重复的群集”(CRISPR)。Jinek等。 2,5)在2012年将CRRNA和曲克纳分子组合成单个RNA的唯一分子。 通过Crisper-Cas9系统3,5)促进了哺乳动物细胞中成功的基因组编辑。 在人类基因组中,该系统在2013年3 - 5年成功重复。 Liang等。 6)2015年宣布,CRISPR-CAS9基因编辑技术用于首次修改人类胚胎的DNA序列6,7)。 CRISPR-CAS9已成为人类工程领域的游戏规则改变者8,9)。 该系统具有卓越的功效,优越的安全性,更精确,受欢迎,具有经济利益,并且很容易获得获得结果。 该技术使用酶7)而不是病毒来改变DNA。 随着CRISPR-CAS9的利用迅速增加,它为基因编辑带来了高水平的破坏8-12)研究和伦理格局。 关注,争议和挑战在人类基因组编辑中的整个道德格局中产生。Jinek等。2,5)在2012年将CRRNA和曲克纳分子组合成单个RNA的唯一分子。通过Crisper-Cas9系统3,5)促进了哺乳动物细胞中成功的基因组编辑。在人类基因组中,该系统在2013年3 - 5年成功重复。Liang等。 6)2015年宣布,CRISPR-CAS9基因编辑技术用于首次修改人类胚胎的DNA序列6,7)。 CRISPR-CAS9已成为人类工程领域的游戏规则改变者8,9)。 该系统具有卓越的功效,优越的安全性,更精确,受欢迎,具有经济利益,并且很容易获得获得结果。 该技术使用酶7)而不是病毒来改变DNA。 随着CRISPR-CAS9的利用迅速增加,它为基因编辑带来了高水平的破坏8-12)研究和伦理格局。 关注,争议和挑战在人类基因组编辑中的整个道德格局中产生。Liang等。6)2015年宣布,CRISPR-CAS9基因编辑技术用于首次修改人类胚胎的DNA序列6,7)。CRISPR-CAS9已成为人类工程领域的游戏规则改变者8,9)。该系统具有卓越的功效,优越的安全性,更精确,受欢迎,具有经济利益,并且很容易获得获得结果。该技术使用酶7)而不是病毒来改变DNA。随着CRISPR-CAS9的利用迅速增加,它为基因编辑带来了高水平的破坏8-12)研究和伦理格局。关注,争议和挑战在人类基因组编辑中的整个道德格局中产生。
表1:所选作者的文献计量指标。 div>(Source: Own elaboration from WOS data, as of June 2023) ....................... 20 Table 2: Main bibliometric indicators of the magazines in which the selected articles have been published. div>(Source: Own elaboration from WOS data, as of June 2023) ....................................................................... 20 Table 3: Search results for the author “Francisco Juan Martínez Mojica”. div>(Source: Own elaboration from WOS data, as of June 2023) ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................., div>(来源:截至2023年6月的WOS数据中的详细说明)......... 24表5:作者“ Emmanuelle Charpentier”的搜索结果。 div>(来源:截至2023年6月的WOS数据中的详细说明)......... 26表6:作者“ Feng Zhang”的搜索结果。 div>(Source: Own elaboration from WOS data, as of June 2023) ....................... 28 Table 7: Search results with partial equations of bioethical perspectives. div>(Source: Own elaboration from WOS data, as of June 2023) ........................................................................................... 30 Table 8: Search results with final equations of bioethical perspectives. div>(来源:截至2023年6月的WOS数据)....................................................................................................................................... .................................................................... div>(来源:截至2023年6月的WOS数据中的自己详细说明)
生物化学研究 2008 : 63 : 17 ― 20. 5) Carroll D. 利用可靶向核酸酶进行基因组工程。生物化学年鉴2014; 83:409―39.6)Jinek M、Chylinski K、Fonfara I、Hauer M、Doudna JA、Charpentier E. 适应性细菌免疫中的可编程双RNA引导DNA内切酶。科学 2012; 337:816―21.7)Gasiunas G、Barrangou R、Horvath P、Siksnys V. Cas9-crRNA 核糖核蛋白复合物介导特异性 DNA 切割以实现细菌适应性免疫。美国国家科学院院刊2012; 109:E2579―86. 8) Nakata A,Shinagawa H,Amemura M.大肠杆菌碱性磷酸酶同工酶基因(iap)的克隆。基因 1982; 19: 313 -- 9. 9) Nakata A、Amemura M、Makino K. 大肠杆菌 K-12 染色体中重复序列的异常核苷酸排列。细菌学杂志1989; 171: 3553 ― 6.10) Groenen PM、Bunschoten AE、van Soolingen D、van Embden JD。结核分枝杆菌直接重复簇中 DNA 多态性的性质;通过一种新颖的分型方法进行菌株鉴别的应用。分子微生物学1993; 10: 1057 — 65。11) Mojica FJ、Judge G、Rodriguez-Valera F. 不同盐度下邻近部分修饰的 PstI 位点的 Haloferax medi- terranei 序列的转录。分子微生物学1993; 9:613―21。12)Bult CJ,White O,Olsen GJ,Zhou L,Fleischmann RD,Sutton GG 等。产甲烷古菌 Methanococcus jannaschii 的完整基因组序列。科学 1996 ; 273: 1058 ― 73.13) Haft DH,Selengut J,Mongodin EF,Nelson KE。原核生物基因组中存在 45 个 CRISPR 相关 (Cas) 蛋白家族和多种 CRISPR/Cas 亚型。 PLoS Comput Biol 2005; 1:e6 14) Makarova KS、Aravind L、Grishin NV、Rogozin IB、Koonin EV。通过基因组背景分析预测的嗜热古菌和细菌特有的 DNA 修复系统。核酸研究2002; 30:482―96.15)Makarova KS,Aravind L,Wolf YI,Koonin EV。 Cas 蛋白家族的统一以及 CRISPR-Cas 系统起源和进化的简单场景。直接生物学2011; 6:38。16) Mojica FJM、Ten-Villaseñor C、Garcia-Martinez J、Soria E. 间隔规则的原核重复序列的介入序列源自外来遗传元素。 J Mol Evol.2005; 60: 174 ― 82。17) Pourcel C、Salvignol G、Vergnaud G. 鼠疫耶尔森氏菌中的 CRISPR 元素通过优先吸收噬菌体 DNA 获得新的重复序列。微生物学 2005; 151: 653 ― 63.18) Bolotin A, Quinquis B, Sorokin A, Ehrlich SD。
我谨代表 IEOM 国际协会欢迎您参加 2023 年 3 月 6 日至 9 日由马尼拉德拉萨大学 (DLSU) 主办的第 13 届工业工程与运营管理国际年会。会场为马尼拉希尔顿酒店。这次独特的国际会议为来自许多行业的学者、研究人员和从业者提供了一个论坛,以交流想法并分享工业工程和运营管理领域的最新发展。这一多元化的国际盛会提供了一个合作和推进工业工程和运营管理主要趋势理论和实践的机会。来自 50 个国家/地区的 700 多篇论文/摘要提交。经过彻底的同行评审过程,超过 500 篇被接受进行演示和出版。该计划包括许多工业工程和运营管理的前沿主题。这次会议将讨论许多与质量和服务持续改进有关的问题。我们的主讲嘉宾将讨论其中一些问题:1. Br。 1. Bernard S. Oca FSC,德拉萨大学校长 2. Jose Arturo Garza-Reyes 教授,英国德比大学商学院、法律和社会科学学院运营管理学教授、供应链改进中心主任 3. Mynard Bryan R. Mojica,菲律宾中央银行金融包容办公室政策发展组副主任 4.
* 1 CIC nanoGUNE BRTA,西班牙圣塞瓦斯蒂安。 2 西班牙马德里拉蒙卡哈尔大学医院遗传学服务中心、IRYCIS 和罕见疾病生物医学研究中心 (CIBERER) 3 西班牙马德里国家生物技术中心 (CNB-CSIC) 分子和细胞生物学系和罕见疾病生物医学网络研究中心 (CIBERER-ISCIII)。 4 INGEMM,拉巴斯大学医院,CIBERER-ISCIII,马德里,西班牙。 5 晶体学研究实验室,IACT(CSIC-UGR),阿米拉,格拉纳达,西班牙 6 布鲁塞尔大学间生物信息学研究所,ULB-VUB,布鲁塞尔 1050,比利时 7 布鲁塞尔结构生物学,布鲁塞尔自由大学,布鲁塞尔 1050,比利时 8 结构生物学研究中心,VIB,布鲁塞尔 1050,比利时。 9 美国马萨诸塞州波士顿 02114 马萨诸塞州总医院基因组医学中心和病理学系 10 美国马萨诸塞州波士顿 02115 哈佛医学院病理学系 11 西班牙巴塞罗那 Integra Therapeutics SL。 12 西班牙巴塞罗那庞贝法布拉大学医学与生命科学系。
A. Vela SSS,3,布鲁斯·霍夫曼(Bruce Hoffman Ttt),3,伯纳德·蒙特罗(Bernard Monteiro ,2 ,2 , Finish Book, 2 , Gistlere 2 , 2 , Synnaeus, 2 , Astrid Acosta, 2 , Edwin Agudelo, , Ferdinand G. Have gggg,2 , André L. C. Cano hhh,2 2 2 2 2 2 2 2 2 2 2 2 2 , Lucelia N. Carvalho,2 , 2 , 2 2 , 2 , Murilo S. Tables mmm,2 , Carlos Are,2 ,卡罗来纳州R. C John G. Lundberg。 wwww,2,20,Lucia Rapp Py-Daniel F,2,Frank R. V Leandro M.