本文介绍了增材制造预制件五轴加工的坐标系定义和传输。在该方法中,将一组基准点连接到临时连接到零件的部件上,并使用结构光扫描仪校准它们相对于预制件几何形状的位置。然后可以在机床中测量这些基准点,以确定零件的位置和方向。该方法通过对增材制造的因瓦合金预制件的碳纤维铺层模具进行精加工来演示。除了展示加工零件所需的坐标传输方法外,还讨论了加工增材制造预制件的几个关键挑战,并提出了潜在的解决方案。不幸的是,由于增材工艺留下的零件内部孔隙,最终零件最终无法使用。未来的工作将重新制造该零件,同时采取措施避免孔隙和遇到的其他挑战。© 2022 制造工程师协会 (SME)。由 Elsevier Ltd. 出版。保留所有权利。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由 NAMRI/SME 科学委员会负责同行评审。关键词:增材制造;铣削;结构光扫描;计量学;基准点
随着超表面在光学应用领域的应用越来越广泛,在其开发中需要一种能够以低成本实现大表面和亚100纳米尺寸的制造方法。由于其高吞吐量和小结构化能力,软纳米压印光刻是制造此类器件的良好候选方法。但是,由于必须使用低粘度聚合物才能达到所需尺寸,因此阻碍了其在可见光波长下超表面的应用,这使得最终的压印件更易碎,且该过程更昂贵、更复杂。在此,我们提出了一种PDMS模具制造方法,该方法依赖于PDMS的自组装掩模,然后直接蚀刻模具,从而与聚合物粘度无关可达到的最小尺寸。我们对使用我们的方法获得的模具制造的超表面进行了表征,验证了其在大表面器件纳米制造中的应用。
摘要 随着纳米技术领域的进步,纳米图案化不仅在高附加值产品中得到广泛应用,而且在廉价产品中也得到广泛应用。此外,大规模生产廉价产品所需的技术,如连续卷对卷 (R2R) 工艺,正在迅速兴起。人们对亚微米和纳米模具的制造进行了广泛的研究。在这项研究中,我们提出了一种激光干涉曝光来制造可用于连续卷对卷图案化的纳米图案圆柱形模具。此外,我们还展示了使用棱镜在圆柱体(长度为 300 毫米,直径为 100 毫米)上制造无缝图案的螺旋曝光工艺。使用 UV 树脂将图案转移到平面模具上,并使用场发射扫描电子显微镜进行测量;测量结果显示图案均匀,具有纳米图案线宽(75 纳米)和亚微米周期(286 纳米)。观察结果表明,使用激光干涉光刻制造卷模的方法是一种快速可靠的无缝图案化方法。
背景:通常需要进行组织病理学鉴定,因为真菌培养的敏感性不足以进行准确诊断。另一方面,病理诊断,尤其是霉菌的病理诊断,即使由经验丰富的病理学家进行,也常常不准确。在区分毛霉菌病和曲霉病时尤其如此,这两种病有不同的药物选择和医疗管理。根据潜在疾病的严重程度或诱发因素,疾病很容易在短时间内变得严重。因此,正确的诊断极其重要,应委托给病理学家。目的:开发一种基于人工智能 (AI) 的霉菌感染自动组织学诊断系统,以支持一般病理学家的诊断,特别是区分曲霉菌和毛霉菌。方法:我们使用两个指标作为诊断系统;即独立菌丝的角度和每个菌丝的曲折度。结果和结论:我们分别从曲霉病和毛霉菌病的标准病例中收集了 147 个和 67 个图像样本。所有图像均通过自动识别两种指标成功分析。数据二维图生成的阈值曲线划分的独立区域清楚地包括了从曲霉菌和毛霉目病例中获得的测试数据。本研究证明了我们新开发的基于人工智能的诊断系统的实用性。其实际应用还需要进一步研究。关键词:人工智能方法、曲霉菌、侵袭性霉菌感染、毛霉目、Python
大蒜是一种重要的香料作物,用于调味食品,并且在传统医学中有悠久的使用历史。然而,黑霉菌是一种常见的真菌疾病,影响大蒜,这是由曲霉感染引起的。这种疾病显着影响大蒜的产生和质量。因此,本研究旨在评估新型绿色合成氧化锌纳米颗粒(ZnO-NP)对大蒜中黑色霉菌疾病的抗真菌活性。使用环保绿色合成技术用于使用耐锌细菌serratia sp。产生ZnO-NP。(ZTB24)。在本研究中,实验分析。UV-VIS光谱在380 nm处,透射电子显微镜(TEM),动态光散射(DLS)和ZETA电势证实了Serratia sp的绿色ZnO-NP的成功生物合成。中毒的食物技术和孢子发芽测试揭示了ZnO-NPS在体外条件下对尼日尔的抗真菌活性。通过从感染的大蒜鳞茎中分离出引起疾病的尼日尔真菌的存在,并使用转录序列(ITS)rDNA测序在分子水平上进一步鉴定出来。ZnO-NPS在250μgml-1浓度的ZnO-NP下,菌丝体的生长降至90%,孢子发芽为73%。在大蒜的最终治疗中,在不同浓度(50、100、250和500 ppm)的体内进一步使用了ZnO-NP。在7天和14天后评估了疾病严重程度的百分比,在接种前方法中,500 ppm的ZnO-NP的应用表现出0%的疾病严重程度,而与对照组相比,在接种后14天后,在7天和14天后,黑霉病疾病的疾病严重程度记录为1.10%和0.90%。因此,使用绿色技术合成的ZnO-NP的抗真菌活性为开发天然杀菌剂的开发铺平了道路,为传统化学控制方法提供了可持续可再生的替代方案。
该公司的基本专利于2010年到期,其他公司正在进入市场。一家有希望的创业公司是我的Forest Foods(我们)。该公司开发了用霉菌蛋白制成的培根(图3),它促进了添加剂很少。例如,列出了六种成分:菌丝体,盐,椰子油,糖,天然口味和甜菜浓缩物,这表明该公司针对健康的消费者。在2021年,Mycorena(瑞典)成功地开发了一种使用真菌4的动物脂肪的脂肪,并且很可能可以将其发展为蛋白质以外的材料。真菌蛋白协会成立于2022年11月,集中在Quorn Foods和Mycorena等初创公司,以及Pro Proweg International和Good Food Institute,即促进替代蛋白质的NPO。它正在进行消费者调查等。霉菌蛋白上。以这种方式,公司变得越来越活跃,未来的趋势将引起人们的关注。在日本,杜苏巴大学副教授Daisuke Hagiwara副教授正在使用日本本地的真菌Koji Mold进行霉菌蛋白的研究和开发5。Koji Mold在日本用来酿造味o和酱油,并希望用传统的Koji Mold制成的新食品将在日本生产。
TECHNOLOGY: LASERTEC Shape Femto Industry: Die & Mold Material: CF-H40s (Tungsten Carbide) Dimension: 15 x 25 x 2 mm Cycle Time: 1h 45 min
Applications • Warehouse & Storage Facilities • Document Archives • Military Equipment Preservation • Laboratories and Clean Rooms • Food Processing • Pneumatic Conveying (Product Silos) • Pharmaceutical Manufacturing • Corrosion & Condensation Prevention • Mold & Mildew Prevention • Electronics Storage • Water Treatment Plants • Museums • Film Storage • Grow Facilities