第一种合成塑料是在1907年发现的,当时比利时出生的化学家利奥·H·贝克兰(Leo H. Baekeland)在压力下使用己胺甲基元中胺作为反应的催化剂,在压力下反应苯酚和甲醛。结果是他称为Bakelite的热固性“酚类”塑料。与当时可用的其他塑料相比,例如赛璐oid,Baekeland的热固性酚类更稳定。一旦模制,这种新材料在重新加热或溶解后不会燃烧或软化。这种好处使其在市场上的其他塑料中脱颖而出。Bakelite是立即的商业成功。它具有耐电性,化学稳定,耐热,刚性,湿气和耐候性。它非常广泛地用于其电绝缘能力。Baekeland将其发明的权利卖给了伊士曼柯达公司,该公司首先将其用于摄像头。J.W.也很有趣Hyatt是赛璐oid的发明者,也是凯悦酒店台球舞会公司的创始人,亲自命令他的公司停止使用赛璐oid并替代Bakelite,因为其出色的表现,他的台球球。
摘要 —由于竞争压力的增加,现代组织倾向于依靠知识及其利用来维持长期优势。这就要求准确理解知识管理 (KM) 流程,特别是整个组织系统中知识的创建、共享/传输、获取、存储/检索和应用方式。然而,自新千年开始以来,第四次工业革命(也称为工业 4.0)的到来深深影响和塑造了此类知识管理流程,这涉及机器的互联互通及其自主学习和共享数据的能力。因此,本文研究了工业 4.0 中知识管理的知识结构和趋势。对总共 90 篇相关文章进行了文献计量分析和系统的文献综述。结果揭示了六个关键词集群,随后通过系统的文献综述进行探索,以确定这一新兴领域的潜在流向和未来的研究途径,这些途径能够在工业 4.0 及其后果的管理知识方面取得有意义的进展。
具有无与伦比的光可控性的超表面已显示出彻底改变传统光学的巨大潜力。然而,它们主要需要外部光激发,这使得它们很难完全集成到芯片上。另一方面,集成光子学可以将光学元件密集地封装在芯片上,但它限制了自由空间光的可控性。在这里,通过将超表面装在波导上,我们将导波塑造成任何所需的自由空间模式,以实现复杂的自由空间功能,例如平面外光束偏转和聚焦。这种超表面还打破了有源微环谐振器中顺时针和逆时针传播的回音壁模式的简并性,从而导致片上直接轨道角动量激光。我们的研究展示了一条跨集成光子学和自由空间平台完全控制光的可行途径,并为创建具有灵活访问自由空间的多功能光子集成设备铺平了道路,这使得通信、遥感、显示器等领域的大量应用成为可能。
融化回收多层包装(MLP)废物由于具有挑战性的分离程序而难以进行。但是,将技术与兼容器的混合技术可以简化MLP废物融化回收利用。pp-g-GMA是聚烯烃和PET混合物中的常见相容剂。pp-g-gma兼容剂是通过使用苯乙烯作为共同体的175 rpm,50 rpm和10分钟的内部混合器合成的。滴定是一种检查添加BPO引发剂对GMA移植的三个不同序列的效果的方法。使用双螺钉挤出机和模压以制造拉伸测试样品的注射器,将每个序列的PP-GMA样品与MLP废物复合。FTIR分析表明,GMA和苯乙烯单体已接枝到PP聚合物主链上,通过改变混合序列,GMA接枝度。序列3同时将引发剂,GMA和苯乙烯引入PP熔体,得出了PP-GMA,最显着的GMA接枝度为5.11%。将从序列3产生的PP-GMA中添加到MLP熔体中,增强了MLP/PP-G-GMA化合物断裂时的拉伸强度和伸长率的最高增加。
每年在美国报告约800万个骨科处理。[1]针对长骨骨折的小儿患者的最常见医疗治疗形式,以及一些非放置骨折的成年患者,是在愈合过程中固定和保护肢体,通常使用玻璃纤维或抹灰的铸造。这种方法需要在应用和去除过程中临床医生的集中注意力(每个SES占20分钟)。[2]铸造还具有由于热损伤或锋利的铸造边缘而出现皮肤并发症的风险,难以监测软组织的肿胀以及在典型不合格的青春期患者中保持铸造清洁和干燥的需求。[3]更重要的是,铸造过程对小儿种群特别有问题,他们经常受到(在某些情况下受到伤害)振荡的示威的痛苦。[4]应用的时间和挑战,医源性损伤和皮肤并发症的潜力以及与应用和去除这些铸件相关的成本,具有使用现代纺织品和软机器人方法改进的可能性。[5]
毛细作用可用于将各向异性胶体粒子引导到精确位置,并通过使用界面曲率作为施加场来定向它们。我们在实验中展示了这一点,在实验中,界面的形状通过钉扎到不同横截面的垂直柱上而形成。这些界面呈现出明确定义的曲率场,可沿复杂轨迹定向和引导粒子。轨迹和方向由理论模型预测,其中毛细作用力和扭矩与高斯曲率梯度和与曲率主方向的角度偏差有关。界面曲率在尖锐边界附近发散,类似于尖锐导体附近的电场。我们利用这一特性在优选位置诱导迁移和组装,并创建复杂结构。我们还报告了一种排斥相互作用,其中微粒沿曲率梯度轮廓远离平面边界壁。这些现象在微粒子和纳米粒子的定向组装中具有广泛的用途,在制造具有可调机械或电子性能的材料、乳液生产和封装方面有潜在的应用。
模拟细胞微环境对于类器官和器官芯片研究非常重要。当前的课题之一是将类似血管的结构引入培养系统以改善细胞和组织功能,这值得在设计和系统考虑方面付出特别的努力。基于标准的设备配置,我们制作了一个类似血管的组件,可以轻松集成以进行细胞共培养。该组件由位于开放通道顶部的嵌入单层明胶纳米纤维组成。然后可以用带有模制腔、通道和标准 Luer 连接器的上部塑料板将其封闭。首先将人脐静脉内皮细胞 (HUVEC) 引入类似血管的通道中,并借助旋转装置进行三维培养。然后,施加流动进行细胞骨架重塑,得到致密且排列整齐的 HUVEC 层。随后,将人类胶质母细胞瘤细胞(U87)引入纤维层的上部,并施加流动以进行上部细胞层培养。我们的结果表明,在单层明胶纳米纤维的两侧均形成了 HUVEC 和 U87 细胞层,从而为各种共培养试验提供了可靠的支持。
摘要:在聚合物材料的转换操作中,传输现象与结晶之间存在复杂的相互作用。尤其是熔融状态的聚合物是一种粘弹性流体,具体参数取决于温度,压力,晶体线和分子拉伸。分子拉伸是一个张量变量,其值由流量,温度和压力场的历史记录确定。在聚合物加工操作中,几种现象通过彼此相互作用同时进行。描述上面提到的每种现象的模型的组合和相互作用提供了所有相关数量的演变,因此,还描述了描述通常从壁开始的固化演变的总体模型(其中温度较低,此外,剪切的剪切较高)。这项工作介绍了在注射过程中同骨聚丙烯行为的总体模型。该模型包括球形和原纤维结晶的动力学及其对分子拉伸水平的依赖性;进行建模以预测分子拉伸和沿模制零件厚度的形态分布。模型预测令人满意地描述了过程中温度和压力的演变以及零件内部形态分布的基本方面。
进化塑造了个别物种的感觉能力和能力。在啮齿动物中,主要居住在黑暗的隧道和洞穴中的啮齿动物中,基于晶须的体感系统已发展为主要的感觉方式,对于环境探索和空间导航至关重要。相比之下,在日常生活中从周围的感觉空间收集信息时,人类更多地依赖于视觉和听觉输入。由于这种物种特定的感觉优势,认知相关性和能力的差异,跨物种类似的感觉认知机制的证据仍然很少。然而,最近对啮齿动物和人类的研究产生了令人惊讶的可比处理规则,用于检测触觉刺激,将触摸信息融入感知和目标指导的规则学习。在这里,我们回顾了跨物种的大脑如何利用此类处理规则在触觉学习过程中建立决策,遵循丘脑的规范电路和主要的体体皮质到额叶皮层。我们讨论了啮齿动物中微观和介镜研究的经验证据和计算证据之间的一致性,以及人类宏观成像的发现。此外,我们讨论了未来跨物种研究的相关性和挑战,以解决基于知觉学习的相互依赖于上下文的评估过程。
中立性是国际法中的基本概念,也是反对意见和冲突研究的重要原则。1因此,各国具有适合个性化目的的中立性,以政治,经济或人道主义原因在武装冲突中采用该概念作为法律地位。2作为国际法中的中立性,其战时源于其新法律地位:永久性中立性将中立性的法律地位扩大到和平时期,以及中立国家的权利和义务。3永久性中立是国际法中罕见的法律地位,因为国家必须放弃集体自卫的权利成为中立国家。4国际法中永久性中立的主要例子是瑞士,5,自1850年代以来,伴随这种地位的相互权利和义务已得到认可。6三十年来,土库曼斯坦的外国和国内政策也受到其永久性中立的强烈影响,尽管中亚专制制度与瑞士几乎没有共同之处。7土库曼斯坦通过土库曼宪法的第2条和第9章,Ashgabat的国家纪念碑和中立日(一个主要的公共假期)来阐明其中立性。9国际法中中立的原则如何服务于土库曼斯坦这样的独裁国家?