我们利用先进的数值技术处理基于动力学蒙特卡罗技术的实验测量和模拟,分析了电阻存储器 (RRAM) 中的可变性。研究中使用的设备是使用 TiN/Ti/HfO 2 /W 堆栈制造的。利用新开发的提取方法获得了开关参数。通过与动力学蒙特卡罗模拟进行比较,检查了高级参数提取方法的适用性;特别是,研究和检测了复位和设置事件。获得的数据用于阐明电阻开关操作和周期间可变性。结果表明,可变性取决于用于获得设置和复位电压的数值技术,因此,在 RS 特性和建模研究中必须考虑到这个问题。所提出的技术是互补的,并且根据技术和曲线形状,特定方法的特征可以使其成为最合适的方法。
结果:模拟表明,使用标准的Indygo试验方案(光通量= 200 j cm 2在球囊壁上)在治疗结束时39%的GBM细胞在治疗结束时被杀死,并且最初的光敏浓度为5μmM.5μMM。 安全。增加P热敏化剂浓度产生的细胞杀伤最大增加,当将浓度加倍至10μm时,有61%的GBM细胞杀死了,并保持治疗时间并保持相同的能力。根据这些模拟,标准试验方案进行了合理的优化,并且在没有潜在危险的情况下,细胞杀死的改善难以实现。为了改善治疗结果,应将重点放在改善光敏剂上。
本文是一系列研究,该系列研究了从其新生的原始磁盘(PPD)中积聚的行星的观察性外观。我们评估了在辐射流体动力(RHD)类似物中确定的气温分布与通过蒙特卡洛(MC)辐射转运(RT)方案重新计算的差异。我们的MCRT模拟是针对全局PPD模型进行的,每个模型由嵌入在轴对称全局磁盘模拟中的局部3D高分辨率RHD模型组成。我们报告了两种方法之间的一致性水平,并指出了几个警告,这些警告阻止了温度分布与我们各自的选择方法之间的完美匹配。总体而言,一致性水平很高,高分辨率区域的RHD和MCRT温度之间的典型差异仅为10%。最大的差异接近磁盘光球,光学密集区域和薄区域以及PPD的遥远区域之间的过渡层,偶尔超过40%的值。我们确定了这些差异的几个原因,这些原因主要与用于流体动力模拟(角度和频率平衡以及散射)和MCRT方法(忽略内部能量对流和压缩和扩展工作的典型辐射转移求解器的一般特征有关)。这提供了一种清晰的途径,以减少未来工作中系统的温度不准确。基于MCRT模拟,我们最终确定了整个PPD的通量估计值的预期误差和从其环境磁盘中积聚气体的行星的预期误差,而与山相中的气体堆积量和使用模型分辨率无关。
动态环境中的抽象运动计划是一项具有挑战性的机器人任务,需要避免碰撞和实时计算。最新的在线方法作为速度障碍(VO)保证安全的本地计划,而基于强化学习或图形离散化的全球计划方法在计算上效率低下或不可证明是碰撞的安全性。在本文中,我们将蒙特卡洛树搜索(MCT)与VO结合起来,以修剪不安全的动作(即相撞速度)。以这种方式,即使在非常大的动作空间(60个动作)中,我们可以进行极少的MCT模拟计划,比使用许多模拟的纯MCT获得更高的累积奖励和更低的计算时间。此外,由于与VO的动作修剪,我们的方法可以保证避免碰撞,而纯MCT则没有。在本文中铺平了在实际机器人和多代理分散运动计划上计划MCT计划的道路。
扩展卡尔曼滤波器或高斯和滤波器等近似方案可能不可靠,而确定性积分方法难以实现。SMC 方法,也称为粒子方法,是一类基于顺序模拟的算法,用于近似感兴趣的后验分布。它们之所以广受欢迎,是因为它们易于实现,适合并行实现,更重要的是,已在多种环境中证明能比刚才提到的标准替代方案产生更准确的估计 [14, 17, 35]。本文的主要目的是讨论参数 θ 未知且需要以在线或离线方式从数据中估计的情况。我们假设观测值由参数值为 θ ∗ 的未知“真实”模型生成,即 X n | ( X n − 1 = xn − 1 ) ∼ f θ ∗ ( ·| xn − 1 ) 和 Y n | ( X n = xn ) ∼ g θ ∗ ( ·| xn )。静态参数估计问题在过去几年中引起了广泛关注,并且已提出许多 SMC 技术来解决该问题。在这篇评论中,我们试图深入了解这项任务的难度,并全面概述该主题的文献。我们将介绍每种方法的主要特点并评论它们的优缺点。但是,我们不会尝试讨论具体实现的复杂性。为此,我们请读者参阅原始参考文献。我们选择将这些方法大致分为以下几类:
勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
Savvakis C. Savvides 曾任塞浦路斯开发银行高级经理兼扭亏为盈部门主管。此前,他曾担任项目融资和结构性融资部门主管。他还曾担任该银行旅游和服务贷款组合主管。他曾担任哈佛大学和加拿大皇后大学投资评估和管理项目的客座讲师。他是投资评估、风险分析以及营销和商业战略在项目评估中的应用方面的多部出版物的作者。他还是 RiskMaster 和 RiskEase 等软件程序的开发者,这些程序被广泛用于项目评估中的风险评估。
摘要:Monte Carlo(MC)是研究散射媒体中光子迁移的强大工具,但很耗时以解决反问题。为了加快MC模拟的速度,可以将缩放关系应用于现有的初始MC模拟,以生成具有不同光学属性的新数据集。我们命名了这种方法基于轨迹,因为它使用了初始MC模拟的检测到的光子轨迹的知识,这与基于较慢的光子方法相反,在这种方法中,新型MC模拟具有新的光学特性。我们研究了缩放关系的收敛性和适用性限制,这两者都与所考虑的轨迹样本也代表了新的光学特性有关。为了吸收吸收,缩放关系包含平滑收敛的兰伯特啤酒因子,而对于散射,它是两个快速分化因子的乘积,其比例很容易达到十个数量级。我们通过研究给定长度的轨迹中的散射事件数量来研究这种不稳定。我们根据记录的轨迹中的最小最大散射事件进行了散射缩放关系的收敛测试。我们还研究了MC模拟对光学性质的依赖性,这在反问题中最关键,发现散射衍生物归因于小泊松分布的散射事件分布的小偏差。本文也可以用作教程,有助于理解比例关系的物理学与其局限性的原因,并制定了应对它们的新策略。
过去几年,陆军航空事故不断增加,这主要是由于任务频率和复杂性增加以及资源减少。由此造成的损失(人员伤亡、金钱、设备)的严重性促使陆军安全中心指挥官要求全面审查安全隐患和后续安全控制的评估和选择方式。该项目通过开发和使用有效识别和评估控制组合的方法,将价值导向思维、蒙特卡罗模拟和整数规划相结合,以满足这一需求。整数规划生成控制组合,以最大程度地减少导致陆军航空事故的危险。使用引导方法的蒙特卡罗模拟用于模拟 100,000 个 UH-60 飞行小时内发生的事故造成的损失数量和类型。已经开发了一个价值模型来量化这些损失的严重程度。控制组合的预期绩效计算为实施这些控制措施所导致的损失严重程度的预期下降。
患者体内的服用过量会破坏治疗过程,并可能具有毁灭性的影响。另一方面,如果粒子是中子,则将乘以这种效应。由于在医用线性加速器中产生的约0.1至2 MeV的中子中子具有20个质量因子(QA),因此在组织中产生高等效剂量。在本文中,使用Monte Carlo Simulation进行了18 MV Varian-Clinac IX线性加速器的组件的光线产生概率。计算了每个光子灰色生产中的每个龙门成分和幻影的贡献。结果表明,光负基因的产生最大比率属于每平方厘米的光子灰色的主要准直仪剂。在目标中,这是光子中子产生的第一个来源,在零时计算热中子的通量。