摘要简介:最近,许多领先的全球社会努力促进质子治疗技术,以使其普遍使用。目标是为所有受益于此的癌症患者提供质子疗法,从而提高其整体生活质量。这个共同的目标是全球范围内的辐射肿瘤学家,医学物理学家,放射治疗师和医院主管。引入质子治疗系统,再加上对动量分析系统的调整,具有潜在的临床益处。材料和方法:动量分析系统通常会修改临床质子束的能量,从而影响Bragg峰的形状和位置。Fluka是一种基于蒙特卡洛的软件,用于通过将质子束引导到水幻影中来模拟各种光束设置。分析了所得的bragg峰,并将其与不同设置模拟的峰进行了比较。结果:研究结果表明,在所有潜在的肿瘤深度中,Bragg峰在带有和没有调节剂的质子治疗系统中发生变化。结果表明,对于深肿瘤(例如前列腺(例如前列腺)到Z = 2.6 cm的Z = 31.4 cm的位置,对于脊柱轴肿瘤的位置,仅通过调节调节剂= 5至∆Z调节仪的调节剂深度= 30 cm的能量水平,而无需更改Proton的能量水平。结论:对这些结果的研究可能是潜在的剂量结果,特别是对于有兴趣获得这种质子治疗系统以治疗和管理肿瘤在不同深度的诊所。
摘要:这项研究研究了从改良的医疗线性促进剂中的电子束中的电子能量分布的散射箔材料和采样持有人的放置如何用于闪光灯放射疗法。我们分析了各个位置的电子能光谱,即离子室,镜像和下巴,以评估CU,PB-CU,PB和TA箔的影响。我们的发现表明,靠近源的距离会增强电子能量分布对箔材料的依赖性,从而通过材料选择实现精确的光束控制。蒙特卡洛模拟可有效设计箔以实现所需的能量分布。将采样支架移至远离源的较远的材料材料的影响,促进了更多均匀的能量扩展,尤其是在0.5-10 MEV范围内,以12 MEV电子束。这些见解强调了量身定制的材料选择和采样持有人定位在优化电子能量分布和闪存放射疗法研究的通量强度方面的关键作用,从而使实验设计和临床应用受益。
摘要 本研究研究了三维电化学工艺对外来化合物纺织废水中甲基橙 (MO) 染料污染物的脱色性能。采用具有强氧化电位的电化学技术处理纺织染料,并采用附加吸附技术有效去除废水中的染料污染物。在电流密度为 15 mA/cm 2、能耗为 3.62 kWh/kg 和电流效率为 79.53% 的情况下,MO 去除率约为 98%。在电流密度为 15 mA/cm 2 时,50 mg/L MO 污染物迅速矿化,半衰期为 4.66 分钟。此外,在三维电化学反应器中对石墨插层化合物 (GIC) 进行电极化,以增强直接电氧化和 . OH 的生成,从而提高协同处理效率。利用人工智能(AI)和机器学习(ML)技术,如人工神经网络(ANN)、支持向量机(SVM)和随机森林(RF)算法,对MO污染废水的脱色进行了优化。统计指标表明,模型的优越性顺序为:ANN>RF>SVM>多元回归。人工神经网络(ANN)和随机森林(RF)方法对工艺参数的优化结果表明,电流密度为15 mA/cm 2、电解时间为30分钟、初始MO浓度为50 mg/L是维持电化学反应器电流和能源效率的最佳操作参数。最后,蒙特卡洛模拟和敏感性分析表明,ANN的预测效率最好,不确定性和变异性水平最低,而随机森林的预测结果略好。
摘要 日本政府已批准硼中子俘获疗法 (BNCT) 用于治疗无法切除的、局部晚期和复发性头颈部癌,自 2020 年 6 月起可在国家健康保险报销。住友重工业株式会社 (Sumitomo) 开发了一种用于临床 BNCT 的新型治疗计划系统 NeuCure® Dose Engine。为了将该系统安全地用于临床,将水模内的模拟中子通量和伽马射线剂量率与实验测量值进行了比较。此外,为了验证和确认新的计划系统,将拟人头部模型内的剂量分布与 BNCT 治疗计划系统 SERA 和内部开发的蒙特卡罗剂量计算程序进行了比较。模拟结果与实验结果非常吻合,热中子通量在 5% 以内,伽马射线剂量率在 10% 以内。头部模型内的剂量分布与 SERA 和内部开发的剂量计算程序非常接近,肿瘤的剂量分布在 3% 以内,脑部的剂量分布在 0.3 Gy w 以内。关键词:硼中子俘获治疗,治疗计划系统,调试,蒙特卡罗模拟
本期观点主要关注物理和化学领域中量子算法和蒙特卡罗方法之间的几个重叠部分。我们将分析将已建立的量子蒙特卡罗解决方案集成到量子算法中的挑战和可能性。这些包括精细的能量估计器、参数优化、实时和虚时动力学以及变分电路。相反,我们将回顾利用量子硬件加速统计经典模型中采样的新想法,并将其应用于物理、化学、优化和机器学习。本评论旨在让两个社区都能阅读,并旨在促进量子计算和蒙特卡罗方法交叉领域的进一步算法发展。本期观点中讨论的大多数作品都是在过去两年内出现的,表明人们对这一有前途的研究领域的兴趣正在迅速增长。
对于给定的角色(玩家):a – 动作s – 当前状态Q(s,a) – 在状态s下采取行动a时的平均游戏结果N(s) – 迄今为止访问状态s的次数N(s,a) – 迄今为止在状态s下选择动作a的次数
计算机代码系统 penelope(2018 版)对任意材料中耦合的电子-光子传输进行蒙特卡罗模拟,能量范围很广,从几百 eV 到大约 1 GeV。光子传输通过标准的详细模拟方案进行模拟。电子和正电子历史是基于混合程序生成的,该程序结合了硬事件的详细模拟和软相互作用的压缩模拟。名为 pengeom 的几何包允许在由二次曲面限制的均质体(即平面、球体、圆柱体、圆锥体等)组成的材料系统中生成随机电子-光子簇射。本报告不仅旨在作为 penelope 代码系统的手册,还旨在为用户提供理解蒙特卡罗算法细节所需的信息。
出于地貌理由放置了另一个可能的入侵地点,但是当人们认识到奥林巴斯蒙斯山顶附近的一些熔岩流也不一致[5]。mogi风格的分析模型用于检验[5]的假设,即这种不一致是由于Caldera Complex的东南部东南部的岩浆体的通货膨胀引起的,虽然这种岩浆系统是合理的,但观察到的不和谐模式可以更好地归因于East [3,6,6]。不幸的是,尽管这些最初的见解令人兴奋,并支持了山顶附近存在岩浆岩体的身体的观念,但可以从Mogi式的方法中推断出来的,因为该方法无法考虑关键元素,例如诸如大厦大厦的详细表面形态,岩浆身体的几何形状,是否表面故障(是否
有关能量分布函数(EDF)的准确知识对于建模半导管设备中热载体损伤的形成至关重要[1]。电子 - 电子散射(EES)可以实质上影响EDF [2-4],并且必须正确地包括在运输模型中。在EES存在下变为非线性的Boltzmann方程的解决方案方法是基于确定性的迭代方法[2]或集合Monte Carlo方法[5-7]。 在这项工作中,我们求助于两个粒子动力学方程,该方程在粒子间相互作用的情况下也保持线性。 该方程溶液的蒙特卡洛算法基于轨迹对的计算和策略。 两个波向量𝐤1和𝐤2被同时考虑,这意味着该方法实际上是在对六维动量空间进行采样。 然而,将Momentum空间的维度加倍,不会降低Monte Carlo方法的效率,因为它与确定性方法形成鲜明对比,因此它不会遭受维度的诅咒。解决方案方法是基于确定性的迭代方法[2]或集合Monte Carlo方法[5-7]。在这项工作中,我们求助于两个粒子动力学方程,该方程在粒子间相互作用的情况下也保持线性。蒙特卡洛算法基于轨迹对的计算和策略。两个波向量𝐤1和𝐤2被同时考虑,这意味着该方法实际上是在对六维动量空间进行采样。将Momentum空间的维度加倍,不会降低Monte Carlo方法的效率,因为它与确定性方法形成鲜明对比,因此它不会遭受维度的诅咒。
1。MPS集团在一眼就可以Banca Monte dei Paschi di Siena S.P.A.(“ Banca MPS”,“ BMPS”,“ Monte dei Paschi”,“ Montepaschi Group”,“ Group”或“ Bank”或“ Bank”),成立于1472年,在1472年在意大利锡耶纳(Siena)成立,仍然被认为是世界上的Bank,该公司的业务仍然很大。蒙特·德帕斯(Monte dei Paschi)的历史扎根于周围地区。在此框架之日,经济和财务部是BMPS的多数股东。Banca MPS是Montepaschi集团的母公司,Montepaschi集团是主要的意大利银行集团之一,在其经营的业务领域,例如租赁,货运,公司融资和投资银行业务。保险退休金部门与AXA的战略合作伙伴关系涵盖,而资产管理活动是通过独立第三方的投资产品进行的。拥有16,737名员工1,该集团在意大利各地运营,并整合了通过全拥有分支机构提供的传统零售和商业银行服务,并通过在Widiba Bank工作的高技能财务顾问网络增强了数字服务系统。小组的主要子公司是: