摘要:本文探讨了碲化物玻璃中的 MoO 3 和 SiO 添加剂对在辐射背景或宇宙辐射增加的条件下工作的电子微电路的屏蔽特性和保护的影响。之所以选择 MoO 3 和 SiO 掺杂剂,是因为它们的特性(包括绝缘特性)可以避免辐射损伤引起的击穿过程。这项研究的意义在于提出使用防护玻璃保护电子电路中最重要的组件免受电离辐射负面影响的方法,电离辐射可能会导致故障或导致电子设备不稳定。使用标准方法评估伽马和电子辐射的屏蔽效率,以确定放置在屏蔽后面并受到不同剂量辐照的微电路的阈值电压(∆U)值的变化。结果表明,玻璃结构中 MoO 3 和 SiO 含量的增加可使伽马辐射屏蔽效率提高高达 90%,同时在长时间暴露于电离辐射的情况下仍能保持微电路性能的稳定性。根据所得结果,我们可以得出结论:使用基于 TeO 2 –WO 3 –Bi 2 O 3 –MoO 3 –SiO 的防护玻璃非常有希望为在背景辐射或宇宙辐射增加的条件下工作的微电路和半导体器件的主要部件提供局部保护。
摘要:使用O 3(臭氧)和SOCL 2(硫代氯化物)的顺序暴露证明了钼(MO)的热原子层蚀刻(MO)。原位石英晶体微量平衡(QCM)研究对溅射的Mo涂层QCM晶体进行。QCM结果表明,在短暂蚀刻延迟后,Mo Ale显示出线性质量下降与啤酒周期。每次o 3暴露都会观察到明显的质量增加。每次SOCL 2暴露都会发生巨大的质量下降。Mo Ale的每个周期的质量变化(MCPC)是在长时间的SCOL 2暴露后是自限制的。MCPC随着3个暴露时间的较长而增加。原位QCM研究表明,这种软饱和度更长的O 3暴露于Mo的扩散限制氧化引起的。mo蚀刻速率随蚀刻温度逐渐增加。在饱和条件下,在75、125、175和225°C时,mo蚀刻速率分别为0.94、5.77、8.83和10.98Å/循环。X射线光电子光谱(XPS)和原位四倍质谱法(QMS)研究进行了研究,以了解反应机制。XPS在150°C下暴露于O 3后主要在MO表面上显示MOO 3。从QMS研究中,当MO在200°°C中接触MO在MO中暴露于SOCL 2时,监测了挥发性SO 2和MOO 2 Cl 2。这些结果表明,这些结果表明,通过氧化和脱氧氯次反应发生。mo用O 3氧化为MOO 3。随后,MOO 3经历了脱氧氯化反应,其中SOCL 2接受氧气产生SO 2并捐赠氯以产生MOO 2 Cl 2。Additional QCM experiments revealed that sequential exposures of O 3 and SO 2 Cl 2 (sulfuryl chloride) did not etch Mo at 250 ° C. Time-resolved QMS studies at 200 ° C also compared sequential O 3 and SOCl 2 or SO 2 Cl 2 exposures on Mo at 200 ° C. The volatile release of MoO 2 Cl 2 was observed only using the SOCl 2 deoxychlorination reactant.原子力显微镜(AFM)测量结果表明,MO表面的粗糙度与Mo Ale循环缓慢增加。
在Terahertz(THZ)频率范围内产生单色电磁辐射,数十年来一直是一项艰巨的任务。在此,证明了介电材料KY(MOO 4)2中光音子单色子THZ辐射的发射。ky的分层晶体结构(MOO 4)2导致红外剪切晶格振动的能量低于3.7 MeV,对应于低于900 GHz的频率,而基于固体的单色辐射源很少见。直接通过5 ps长宽带Thz脉冲激发,ky中的红外活性光学振动(MOO 4)2重新发射窄带子Thz辐射作为数十无picseconds的时变偶极子,对于振荡器而言,频率低于1 THz,这对于振荡器而言异常长。如此长的连贯发射允许检测超过50个辐射的辐射,频率为568和860 GHz。与使用材料的化学稳定性相同的较长衰减时间表明,THZ技术中的各种可能应用。
COBRA 国际有限公司,700/478 Amata City Chonburi 工业区,Moo 7,Donhuaror,Muang District,Chonburi 20000,泰国。 www.cobrainter.com
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。
摘要:本文通过关注内部收益率 (IRR) 作为盈利能力指标来评估电池存储系统 (BSS) 的盈利能力,该指标比其他常用指标(最显著的是净现值 (NPV))更具优势。此外,本研究提出了一种多目标优化 (MOO) 方法来估计 IRR,而不是依赖简单的线性优化,并将结果与流行的线性优化与电池周期成本惩罚进行比较。分析是在完美的预见条件下进行的,考虑了多种收入来源:日前和日内市场的套利交易、调峰、参与一级储备市场以及光伏 (PV) 发电单元。收集了 2017 年和 2021 年德国电力市场的数据。结果表明,MOO 方法得出的 IRR 估计值与 2017 年的周期成本模型相似。然而,2021 年市场波动性加剧和电价上涨导致了明显差异。分析表明,如果这些条件与较低的电池容量价格相结合,MOO 方法的效果将显著优于循环成本模型。电池日历寿命和充电状态会降低盈利能力,这些影响也被考虑在内。尽管如此,2021 年的盈利能力相对于 2017 年的明显上升可以提供足够的补偿来解决相对较差的可行性记录问题。
摘要近年来,范德华(Van der Waals)材料中表面声子极地(SPHP)的激发受到了纳米光子学界的广泛关注。alpha相钼三氧化物(α-MOO 3),一种天然存在的双轴双曲晶体,由于其在不同波长带的三个正交指导下支持SPHP的能力(范围10-20 µM),因此出现是一种有前途的极性材料。在这里,我们报告了大面积(超过1 cm 2尺寸)的制造,结构,形态和光学IR表征,α -moo 3多晶膜通过脉冲激光沉积沉积在熔融二氧化硅底物上。由于随机晶粒分布,薄膜在正常发生率下未显示任何光学各向异性。但是,提出的制造方法使我们能够实现单个α相,从而保留与α -moo 3片的语音响应相关的典型强分散体。报告了IR光子学应用的显着光谱特性。例如,在1006 cm -1处具有极化的反射峰,动态范围为∆ r = 0.3,共振Q因子在45°的入射角下观察到高达53的共振Q。此外,我们报告了SIO 2底物的阻抗匹配条件的实现,从而导致独立于极化的几乎完全完美的吸收条件(R <0.01)在972 cm-1处,该条件可维持以较大的入射角维持。在此框架中,我们的发现似乎非常有前途的,对于使用远场检测设置,用于有效和大规模的传感器,滤镜,过滤器,热发射器和无标签的生物化学传感设备,用于进一步开发无IR线印刷膜,可扩展的膜,用于高效和大规模的传感器,过滤器,热发射器和无标签的生化感应设备。
图 1. 合成过程示意图,涉及金属钼和过氧化氢在存在和不存在多巴胺盐酸盐的情况下的溶胶-凝胶反应。溶胶-凝胶反应产物经过水热处理 (HT) 以生成白色 α-MoO 3 -ref 和浅蓝色 HT-MoO 3 /C 粉末。
会议记录定期会议马纳萨斯市建筑审查委员会 2017 年 4 月 11 日 – 下午 7:30 出席成员:William Rush,主席 Debbie Haight,副主席 Jan Alten Nancy Hersch Ingram Fatima Pereira-Shepherd Myra Buchanan Brent(替补) 缺席成员:无 出席工作人员:Jamie S. Collins,开发服务经理 Greg Bokan,规划师 效忠宣誓 点名并确定法定人数 书记员点名,确定法定人数。 会议记录批准 – 2017 年 3 月 14 日 主席 Rush 表示 Moo Moo Junction 的地址不正确,应更新。Haight 女士动议批准修改后的会议记录。Shepherd 女士附议。该动议经口头表决一致通过。新业务 ARB #2017-25 9405 Peabody Street 自由保释金 Bokan 先生表示,申请人提议在建筑物上增加三个壁挂式标志,用于自由保释金。教堂街和 Peabody 街上的两个铝制标志,