磁性材料已知数千年。,由于它们在电动机,传感器和计算机等设备中的广泛使用以及常规的冰箱磁铁,它们在当今世界中起着重要作用。对在铁磁材料中的应用(即自旋波)中的应用非常希望。如今,大多数计算单元基于电子设备。 然而,由于使用高功率密度和高电压相关的局限性,可能很快就不可能对综合电路进行进一步的小型化。 旋转波的最大优势是它们的非常低的能量,加上微波频率中数百甚至数十纳米的波长,可以设计出比电子设备设计具有明显低于电子设备的纳米级设备的可能性。 在过去的二十年中,科学家特别强调了基本宏伟设备的设计,例如定向耦合器,二极管,晶体管或逻辑门,这些设备可以在宏伟的集成电路中找到应用。 在这些系统中,对元素之间相互作用的控制对于完全利用自旋波性能至关重要。 在本文中,我研究了可以在宏伟系统中找到应用的铁磁多层。 我通过引入磁性开始论文。 接下来是对微磁性的解释,控制磁系统的相互作用,磁化纹理和自旋波,以当前深入研究的宏伟晶体和自旋波计算的主题结论。如今,大多数计算单元基于电子设备。然而,由于使用高功率密度和高电压相关的局限性,可能很快就不可能对综合电路进行进一步的小型化。旋转波的最大优势是它们的非常低的能量,加上微波频率中数百甚至数十纳米的波长,可以设计出比电子设备设计具有明显低于电子设备的纳米级设备的可能性。在过去的二十年中,科学家特别强调了基本宏伟设备的设计,例如定向耦合器,二极管,晶体管或逻辑门,这些设备可以在宏伟的集成电路中找到应用。在这些系统中,对元素之间相互作用的控制对于完全利用自旋波性能至关重要。在本文中,我研究了可以在宏伟系统中找到应用的铁磁多层。我通过引入磁性开始论文。接下来是对微磁性的解释,控制磁系统的相互作用,磁化纹理和自旋波,以当前深入研究的宏伟晶体和自旋波计算的主题结论。然后,我解释了论文中使用的数值方法,并详细介绍了问题的实现。在研究的第一部分中,我展示了如何使用非重点相互作用来设计非相互设备。dzyaloshinskii – moriya的相互作用用于诱导分散关系的不对称性,该分散关系进一步用于设计自旋波二极管和循环器。在第二项研究中,使用偶极相互作用引起的达蒙 - 什场模式的表面特征用于设计一个四端口的设备,该设备可以具有不同的功能(循环器,方向耦合器或反射器),用于不同的激发频率。下一项研究显示了与垂直磁各向异性的dzyaloshinskii – moriya相互作用如何导致忽略1 nm的层之间的相互作用,这可以进一步用于设计密集包装的非交织的不相互作用的波导的系统。在第三部分中,我将专注于使用层之间的相互作用,将材料与磁化纹理和具有良好自旋波传播特性的材料搭配起来,以形成宏伟的晶体。第一个系统是具有弱垂直磁各向异性的层,其中诱导条纹结构域,并与薄或绒布层相互作用。由于
大型垂直压电性,5–7可调节带隙,8,9和大型Dzyaloshinskii – Moriya互动(DMI)。10,11因此,近年来,2d Janus材料在纳米科学和纳米技术方面受到了广泛关注。迄今为止,已经在实验中发现了几种磁性janus材料或从理论上预测。例如,他等人。预测,基于CR的Janus Mxene Monolayers CR 2 CXX 0(x,x,x 0 = h,f,cl,br,oh)的NE´EL温度最高为400K。12同样,Akgenc等人。预测基于CR的Janus MXENE的单层CRSCC中的居里温度为1120 K,这表明对未来的Spintronic应用提出了承诺的候选者。13 Jiao等。 提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。 14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究13 Jiao等。提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究14此外,Zhang等人。预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。15研究
随着体积自旋转移矩 (STT) [11,12] 和自旋轨道矩 (SOT) [13–16] 机制的进步,电流诱导畴壁 (DW) 运动 (CIDWM) 已从平面磁性 [8] 演变为合成反铁磁 (SAF) [9,10] 赛道。在铁磁体/重金属 (HM) 界面处存在破缺的反演对称性时,自旋轨道耦合产生手性自旋矩,[17] 驱动 Néel 畴壁运动,具有强垂直磁各向异性 (PMA) 的薄膜,由铁磁体/HM 界面处的 Dzyaloshinskii-Moriya 相互作用 (DMI) 稳定,[18] 可以沿电流方向以高速移动 [12,15,19],既可以沿直线赛道,也可以沿曲线赛道移动。 [20] 据报道,SAF 赛道中存在一种更高效的 DW 运动,该赛道由两个垂直磁化的铁磁子赛道组成,它们通过超薄钌层反铁磁耦合。[10] SAF 结构中的巨大交换耦合扭矩 (ECT) 提供了一种额外的主导驱动机制,允许将 DW 传播速度提高到 ≈ 1000 ms − 1 以上。[10,21] 稀土-过渡金属合金中的 ECT 在亚铁磁合金的角动量补偿温度下进一步最大化。[22,23] 最近,在某些磁绝缘体中也发现了高效的 CIDWM。[24]
收到2022年4月26日;修订的手稿于2022年5月19日收到; 2022年5月23日接受; Nagasaki Nagasaki Nagasaki University Biomedical Sciences研究生院长10天在线发布J-Stage Advance出版物:10天心血管医学系(S.I.U.,Y.U.,K.M.);日本社区医疗保健组织东京新口医学中心,东京(S.Y.,M.T。); Amagasaki的Hyogo县Amagasaki通用医疗中心(Y.N.);萨波罗北海道大学医院(I.T.,J.N。); Hamamatsu Hamamatsu医疗中心(N. Yamamoto,T.K。);横田Yokosuka综合医院,Yokosuka(H.N.);仙台Tohoku大学医院(M.U.); Tsukuba Tsukuba医疗中心医院(S.A.);大阪大学医学院大阪大学(H.H.);福岛医学院,福岛医学院(H.S.);京都京都大学医院(Y. Okuno,Y.Y。);塞基(E.I.); MIE大学医院,TSU(Y。Ogihara);东京的Toho University Ohashi医学中心(N.I.); Shikoku儿童和成人医学中心,Zentsuji(又名); Tsukuba血管中心,Moriya(T.I.);库瓦纳库瓦纳市医疗中心(N. Yamada);福岛福岛Daiichi医院(T.O.);和横滨横滨京岛医院(M.M.),日本(脚注继续下一页。)
抗生素耐药细菌的兴起是全球健康问题,由于这些抗性感染,到2050年,每年预计每年将超过100万人死亡。世界卫生组织(WHO)已经确定了十二种关键的抗生素病原体,包括抗性霉素肠球菌(VRE),例如肠球菌(E.粪便)。vre引起严重的医院可获得的感染,例如心内膜炎和败血症,并对多种抗生素产生了抗药性,强调了对新的抗菌治疗的迫切需求。应对这一危机,由日本千叶大学科学研究生院的Takeshi Murata教授领导的研究人员团队发现了一种有希望的新化合物V-161,有效地抑制了VRE的增长。他们的研究检查了在这些细菌中发现的一种称为Na +传输V-ATPase的钠泵化酶,该酶在E. hirae中发现,E. hirae是粪肠球大肠杆菌的亲戚,用作研究酶的更安全,更可拖动的模型。该团队由Chiba University科学研究生院的第一作者Kano Suzuki助理教授组成;奇巴大学医学真菌学研究中心的Yoshiyuki Goto副教授;高能加速器研究组织结构生物学研究中心的Toshiya Senda教授和Toshio Moriya副教授;国立自然科学研究所的分子科学研究所的Ryota Iino教授。Murata博士解释说:“这种酶有助于将钠离子从细胞中泵出,有助于VRE的生存,尤其是在像人类肠道这样的碱性环境中。这项研究于2024年11月21日在自然结构和分子生物学上发表,假设Na +传输V- ATPase在开发抗生素的发展中可以发挥关键作用,该抗生素专门针对VRE而不影响有益细菌。这种酶在像乳杆菌等有益细菌中不存在,尽管人类具有相似的酶,但它具有不同的功能。这使得VRE中的Na +传输V -ATPase成为选择性抗菌治疗的理想目标。”他进一步指出:“我们筛选了70,000多种化合物,以鉴定酶Na + -V -ATPase的潜在抑制剂。在其中,V-161是一个有力的候选人,在碱性条件下降低VRE生长方面表现出显着的有效性,这对于这种抗性病原体的生存至关重要。”此后,进一步的研究表明,V-161不仅抑制了酶功能,而且还降低了小鼠小肠中的VRE定植,突出了其治疗潜力。这项研究的主要发现是对酶的膜V 0结构域的高分辨率结构分析,揭示了对V-161如何与之结合并破坏酶功能的详细见解。v-161靶向酶的C形环与A-subunit之间的界面,有效地阻断了钠转运。这种结构信息对于理解化合物的起作用至关重要,并为开发针对该酶的药物提供了基础。Murata博士解释说:“从结构分析获得的发现可用于开发其他难治性细菌的治疗方法,也为制定未来药物开发的重要准则构成了基础。”他进一步补充说:“我们希望不仅为VRE进行创新治疗的发展,而且多种耐药细菌将大大推动对耐药性感染的治疗。”
1. Abusalah MAH、Khalifa M、Al-Hatamleh MAI、Jarrar M、Mohamud R、Chan YY 以细胞因子风暴为靶点的基于核酸的 COVID-19 疗法:平息风暴的策略。《个性化医学杂志》。12(3)(无分页),2022 年。文章编号:386。出版日期:2022 年 3 月。2. Al-Hakeim HK、Al-Rubaye HT、Almulla AF、Al-Hadrawi DS、Maes M。急性感染期间炎症引起的神经免疫和神经氧化途径强烈预测了长期 COVID 中的慢性疲劳、抑郁和焦虑症状。《临床医学杂志》。 12(2) (无分页),2023 年。文章编号:511。出版日期:2023 年 1 月。3. Amato ML、Towler BP、Themelis K 等人。使用转录组学研究轻度炎症对肌痛性脑脊髓炎/慢性疲劳综合征 (ME/CFS) 和纤维肌痛 (FM) 的影响。心身医学。会议:第 79 届年度科学会议实现健康公平:心身科学的机会。美国加利福尼亚州长滩。84(5) (第 A110-A111 页),2022 年。出版日期:2022 年 6 月。4. 匿名。新闻焦点。当前药物发现。 (MAR.) (第 12 页),2004 年。出版日期:2004 年 3 月。5. Araf Y、Ullah MA、Faruqui NA、Mowna SA、Prium DH、Sarkar B。登革热疫情是一场全球复发性危机:文献综述。电子全科医学杂志。18(1)(第 1-20 页),2021 年。文章编号:em267。出版日期:2021 年 2 月 1 日。6. Araja D、Krumina A、Nora-Krukle Z、Berkis U、Murovska M。疫苗警戒系统:关于在 COVID-19 疫苗接种中使用警戒数据的有效性的考虑。疫苗。 10(12) (无分页),2022 年。文章编号:2115。出版日期:2022 年 12 月。7. BARAL M、BHANDARI S。体位性直立性心动过速综合征:可能与 COVID 疫苗有关。胸科。会议:2022 年胸科大会摘要。意大利博洛尼亚。161(6 增刊)(第 A517 页),2022 年。出版日期:2022 年 6 月。8. Chen R、Moriya J、Yamakawa J.-I. 等人。慢性疲劳综合征小鼠模型中的脑萎缩和 Hochu-ekki-to (TJ-41) 的有益作用。神经化学研究。 33(9) (第 1759-1767 页),2008 年。出版日期:2008 年 9 月。9. Cole A、Webster P、Van Liew D、Salas M、Aimer O、Malikova MA 加速 COVID-19 疫苗开发的安全监测和挑战。药物安全治疗进展。13 (无分页),2022 年。出版日期:2022 年。10. Connolly DJ、O'Neill LA Toll 样受体靶向治疗的新进展。药理学最新观点。 12(4) (第 510-518 页),2012 年。出版日期:2012 年 8 月。11. Davoudi F、Miyashita S、Yoo TK、Lee PT、Foster GP 深入了解 SARS-CoV-2 感染、急性后 COVID 综合征和 COVID 疫苗的心血管并发症的病理生理学、流行病学和管理。心脏病学中的关键途径。21(3) (第 123-129 页),2022 年。出版日期:2022 年 9 月 1 日。12. De Souza A、Jacques R、Mohan S。新冠疫情时期疫苗诱发的功能性神经系统疾病。加拿大神经科学杂志。50(3)(第 346-350 页),2023 年。出版日期:2023 年 5 月 1 日。13. Dellino M、Vimercati A、D'Amato A 等人。《乱世佳人》:新冠疫情对妇科系统的短暂影响。个性化医疗杂志。13(2)(无分页),2023 年。文章编号:312。出版日期:2023 年 2 月。14. Falco P、Galosi E、Esposito N 等人。新冠疫苗诱发的纤维肌痛样综合征。神经科学。会议:意大利神经病学会第 52 届年会。意大利米兰。 43(补编 1)(第 S435-S436 页),2022 年。出版日期:2022 年 12 月。15. Gad AHE、Ahmed SM、Garadah MYA、Dahshan A. 多发性硬化症患者的反应