缺水应激是影响植物(尤其是葡萄藤的生理和生长反应)最常见的环境压力之一。然而,葡萄藤品种和物种在对水胁迫的耐受性方面有所不同。为了识别最宽容的葡萄茎,使用了两个因子的阶乘随机块设计。第一个因素包括易感简历。Sultana(V。Vinifera L.)接枝移植到三个砧木(Yaghouti,Kolahdari和140 Ru)上,第二个因素是三个水平的水应力潜力(对照,-1 MPA和-2 MPA)。研究了生理参数,例如丙二醛(MDA),电泄漏(EL),脯氨酸,可溶性糖,蛋白质,光合色素和抗氧化剂。我们的结果表明,增加的水应力增强了H 2 O 2,MDA,EL,脯氨酸,可溶性糖和可溶性蛋白,同时减少叶绿素(CHL)和类胡萝卜素含量,生长参数和植物干重。谷胱甘肽过氧化物酶(GPX)的活性响应缺水而增强,而过氧化杀起酶(CAT)和抗坏血酸酯过氧化物酶(APX)酶在-1 MPa时表现出较高的活性,然后在最低水位(-2 MPA)下降低。此外,暴露于水胁迫的140个RU砧木具有较低水平的MDA,H 2 O 2和EL,更高的Chl(A,B),类胡萝卜素,APX和GPX活性以及较高的芽干重。总体而言,这三个砧木的生理和形态反应提出,将商业苏丹娜品种嫁接到耐旱的砧木上,例如140 RU,是提高干旱胁迫耐受性的有效策略。
蛋白质刷不仅在神经丝的功能中起关键作用,而且在生物医学材料中也具有广泛的应用。在这里,我们使用连续的空间自洽场理论研究了离子强度对蛋白质刷形态的影响。开发了一个粗粒的多块多块带电的大分子模型,以捕获氨基酸序列的化学认同。对于pH 2.4的神经丝重(NFH)刷子,我们预测三种形态学方案:肿胀的刷子,冷凝的刷子和共存的刷子,这些刷子由密集的内层和弥漫性外层组成。我们的理论预测的刷子高度与实验数据非常吻合,具有多种离子强度。急剧的高度降低是静电筛选引起的从重叠状态到共存刷子隔离状态的转换的结果。我们还研究了伴随形态变化的散射和机械反应的演变。反射率光谱中的振荡表征了内部冷凝层的存在和微观,而力光谱中的肩膀表示形态肿胀。
COWRIE(Cypraeidae)由于其美丽和相对可用性而在壳收藏家中很受欢迎。某些种类的牛里物种在壳体市场中具有很高的收集价值,但是这导致种类的数量增加和分类名称的不必要的扩散,几乎没有有关其形态的信息。因此,进行了这项研究是为了描述菲律宾辛丹甘湾获得的蛋黄壳之间的形态变化。壳形态属性(例如外壳形状,颜色,带,带模式),形态计量特征(例如外壳长度,宽度,身高,牙齿数量等。)和形状的表征是使用基于距离(Coriandis)的轮廓和里程碑的几何形态分析(GM)和相关分析产生的相对经过的分数。检查并分析了113种样本的16(16)个形态学和十(10)个单位特征。主要观察到颜色,带状图案,横向边缘,横向线,横向线,尖刺,牙齿,尺寸和形状的变化。相对经线分析显示,塞普雷氏菌种之间的壳形变化显着。相关分析显示塞浦路德家族物种之间的形态,大小和形状差异。相关分析中揭示的,观察到的大小变化与形状显着相关。观察到的差异可能是由于许多因素,包括遗传,生物和非生物因素。生物对独特环境的反应中的发展过程和生理学。因此,几何形态计量学和Coriandis帮助我们了解了塞浦路德家族的多样性的性质。需要进一步研究环境异质性,种群分布中的物种位置以及观察到的表型多样性的遗传基础。这种重点会导致有关Cypraeidae家族物种的系统研究中的其他信息。
心电图(ECG)信号提供了有关心脏状况的基本信息,并广泛用于诊断心血管疾病。可用铅上单个心跳的术语是用于监测心脏疾病的主要生物信号。但是,由于噪声和伪影,缺少的潜在客户以及缺乏带注释的数据,分析心跳形态可能会具有挑战性。生成模型,例如deoising扩散生成模型(DDMS),已被证明成功地生成复杂的数据。我们介绍了Beatdiff,这是一种针对多个铅心跳的形态量身定制的轻质DDM。然后,我们证明,使用Beatdiff作为先验,可以将许多重要的心电图下游任务作为贝叶斯反问题框架中的条件生成方法提出。我们提出了一种期望 - 最大化算法EM-Beatdiff,以在不进行微调的情况下解决此条件生成任务。我们通过多个任务说明了结果,例如去除ECG噪声和工件(基线徘徊,电极运动),从单个铅中重建12个LEAD ECG(用于智能手表实验的ECG重建),以及无需可解释的可解释的静音术检测。实验表明,对于本工作中考虑的问题,Beatdiff和Em-Beatdiff的组合优于SOTA方法。
本研究在2023年秋天至2024年秋季期间穿过巴比伦 - 伊拉克市。选择了代表各种栖息地的三个站点进行抽样。Our study involve the morphological identification of Earthworms and confirm the identification of nine species (Aporrectodea tuberculata, Aporrectodea rosea, Aporrectodea caliginosa, Amynthas grasilis, Dendrobaena platyura, Hormogaster redii, Lumbricus terrestris, Lumbricus rubellus and Polytoreutus finni).以及测量了一些生理化学参数,例如(17.3-25.83c°)之间的土壤温度,pH(5.66-7.06),电导率(420-787.67µs/cm),总溶解固体(333.66-683.66-683.66 mg/l),水分含量(5.22-2-2-2-2-2-2-2-2-2-2-2-2)所有站点。为了深入了解整体生态系统健康,使用了各种生物多样性指数,例如(1.26-2.75)和Simpson指数(0.15-0.59)之间的Shannon-Wainer索引来评估基本的earth社区结构,物种分布和相互作用。该研究还证明了物种分布与环境因素之间的显着关系。
昼夜节律,基础和类固醇分泌的季节性变化与几种哺乳动物物种的脑体积变化有关。然而,人类类固醇激素产生的昼夜节律变化与人类脑形态的节奏变化之间的关系在很大程度上是未知的。在这里,我们研究了类固醇激素中昼夜浮动之间的关系,在一项男性的精确成像研究中,男性在上午7点完成了40次MRI和血清学评估。和晚上8点在一个月的过程中,针对激素浓度在其峰值和Nadir处。昼夜浮动与全球和区域脑形态的明显变化相关。从早晨到晚上,总脑体积,灰质体积和皮质厚度降低,与类固醇激素浓度(睾丸激素,雌二醇和皮质醇)的降低一致。并行,脑脊液和心室尺寸从A.M.到下午全球变化是由枕骨和顶叶皮层内的减少驱动的。这些发现突出了脑形态中的自然节奏,这些节奏与类固醇激素的昼夜潮流和流动保持在一起。
空间转录组学(ST)技术的最新进展为肿瘤微环境(TME)内细胞相互作用提供了宝贵的见解。但是,大多数分析工具都缺乏对组织学特征的考虑,并且依赖于匹配的单细胞RNA测序数据,从而限制了它们在TME研究中的有效性。为了解决这个问题,我们介绍了形态增强的空间转录组分析集成仪(Meti),这是一个端到端框架,绘制癌细胞和TME成分,层状细胞类型和状态,并分析细胞的共同定位。通过整合空间转录组学,细胞形态和策划的基因特征,可以增强我们对组织内部骨骼景观和细胞相互作用的理解。我们评估了从各种肿瘤组织产生的ST数据(包括胃,肺和膀胱癌)以及前态组织中产生的ST数据的性能。我们还对现有的聚类和细胞反卷积工具进行了定量比较,证明了Meti的稳健性和一致的性能。
2020 年是该课程没有温伯格博士的第一年,课程以他的名字命名。这一年度课程旨在纪念温伯格博士对该领域的杰出贡献,并赞扬他在任职期间为创建、指导和改进这门课程所做的辛勤工作。在温伯格博士担任课程主任期间,曾有人建议以他的名字命名一门课程,但未获准。然而,我们相信,这项追授的荣誉将通过继续开设这门课程并分享他多年来如此慷慨和耐心地传授给我们的知识来向温伯格博士致敬。虽然我们希望在未来的许多年里分享温伯格博士的专业知识,但我们通过教授下一代专家来纪念他的遗产。毕竟,正如艾萨克·牛顿爵士在 1675 年写给一位科学家的信中所说,“如果我看得更远,那是因为我站在巨人的肩膀上。”
目的:本研究的目的是使用没有TMJ病理的患者中磁共振成像来评估颞下颌关节(TMJ)的形态参数。这项研究的发现预计将作为临床诊断和颞下颌疾病的科学研究的参考值。方法:检查了41名成年患者的磁共振成像图像。在矢状面上进行了con和关节叶状窝的测量。它们按年龄,性别和侧面分组,并使用在磁共振(MR)图像上测得的量化解剖值进行统计分析。结果:在所有参数方面,性别组之间未观察到统计差异。左侧的年龄和前对道角(ACOA)测量之间存在显着的,负,低水平的相关性。考虑到侧比较,测量左侧比右侧的高腺体窝宽度(GFW)值(p = .030)。观察到年龄和ACOA测量之间存在显着的,负,低水平的相关性。结论:年龄和ACOA测量值与TMJ不同边之间的GFW差异之间的相关性是他的研究的积极发现。针对这个解剖区域的形态分析仍然需要通过对较大人群进行的测量结果来确认,因为没有很多文章报告有关该主题的具体结果。关键字:颞下颌关节,解剖学,放射学,磁共振成像
我们感谢 Ciernia 实验室和 Pavlidis 实验室成员在整个项目过程中的实验室会议上提供的周到反馈和建议。我们还要感谢 Wai Hang (Tom) Cheng,他的帮助对于学习如何在 Axioscan 幻灯片扫描仪上成像以及开始进行小胶质细胞形态分析至关重要;Nicholas Michelson,他的帮助对于在 ImageJ 中排除 MicrogliaMorphology 各种特征的代码故障非常有帮助;以及 Dylan Terstege,他在发布之前慷慨地提供了用于 FASTMAP 对齐 Allen Brain Atlas 的材料。我们还要感谢 Brian MacVicar 博士与我们分享他实验室的 Cx3cr1- GFP 小鼠,我们将其用于 2xLPS 体内实验。我们感谢通过 Dynamic Brain 提供的资源