低阈值光学非线性的潜力在光子学和概念光学神经元网络领域引起了广泛关注。二维 (2D) 半导体中的激子在这方面尤其有前景,因为减少的屏蔽和维度限制会促进它们明显的多体相互作用以实现非线性。然而,对这些相互作用的实验测定仍然不明确,因为光泵浦通常会产生激子和未结合载流子的混合物,其中带隙重正化和载流子屏蔽对激子能量的影响相互抵消。通过比较单层 MoSe 2 光致发光光谱对激子基态和激发态能量的影响,我们能够分别识别中性激子和电荷载流子对库仑结合的屏蔽。当中性激子密度从 0 增加到 4 × 10 11 𝑐𝑚 −2 时,激子基态 ( A-1s ) 和激发态 ( A-2s ) 之间的能量差红移 5.5 meV,而电子或空穴密度增加时则发生蓝移。这种能量差变化归因于中性激子的库仑结合相互屏蔽,从中我们提取出激子极化率为 𝛼 2𝐷
摘要 — 本文详细研究了机械应变对过渡金属二硫属化物 (TMD) 材料隧道场效应晶体管 (TFET) 的影响。首先,利用密度泛函理论 (DFT) 的第一原理在元广义梯度近似 (MGGA) 下计算机械应变对 MoSe 2 材料参数的影响。通过在非平衡格林函数 (NEGF) 框架中求解自洽 3D 泊松和薛定谔方程,研究了 TMD TFET 的器件性能。结果表明,I ON 和 I OFF 均随单轴拉伸应变而增加,但 I ON / I OFF 比的变化仍然很小。TMD TFET 中这种应变相关性能变化已被用于设计超灵敏应变传感器。该器件对 2% 的应变显示出 3.61 的灵敏度 (ΔI DS / I DS)。由于对应变的高灵敏度,这些结果显示了使用 MoSe 2 TFET 作为柔性应变传感器的潜力。此外,还分析了应变 TFET 的后端电路性能。结果表明,与无应变 TFET 相比,基于受控应变的 10 级反相器链的速度和能效有显著提高。
图 2:10 K 下注入 Cr 的 MoSe 2 ML 的 PL。 (a) 低 n 掺杂(V g = 0.8 V)下注入 Cr 的 MoSe 2 ML(红色曲线)的 PL 光谱,与原始 MoSe 2 ML(黑色)的 PL 光谱一起绘制。除了来自 MoSe 2 ML 的 X − 和 X 之外,注入 Cr 的样品还在 1.51 eV 左右显示出宽 D 峰。 (b) 激光功率范围为 36 nW 至 123 µ W 下注入 Cr 的 ML 的 PL 光谱。光谱已针对 X − 进行归一化。此处的样品在 V g = 0.8 V 时略微 n 掺杂。 (c) PL 的功率依赖性。最佳拟合线(虚线)及其标准偏差(线周围的阴影区域)与从 PL 光谱中提取的强度(点)一起绘制。除非明确说明,误差线小于数据点的大小。X − 和 X 与幂律 I ∝ P α 拟合,D 与方程 (1) 描述的饱和曲线拟合。(d) Cr 注入 MoSe 2 的时间分辨 PL。1/e 时间约为 14 纳秒。
T. A. Chowdhury *,R.B。Arif,H。Israq,N。Sharmili,R。S. Shuvo电气与电子工程系,孟加拉国达卡Ahsanullah科学技术大学。太阳能电池电容模拟器(SCAPS-1D)已用于模拟,设计和分析Mose 2,这是一种有吸引力的过渡金属二甲藻元化物(TMDC)材料,基于基于的杂项结构太阳能电池,将其用作用于溶胶电池中常规吸收层的潜在替代方法。这项工作还着重于寻找最佳的吸收剂,缓冲层的厚度以及工作温度对太阳能电池性能的影响,并可能替代有毒的CDS缓冲层。已经获得了Mose 2吸收层的最佳厚度为1 µm,缓冲层约为0.04 µm。用基于CD的缓冲层太阳能电池获得的效率为20.21%。在不同的缓冲层中,例如在2 s 3,ZnO,Znos和Znse中,基于Mose 2的太阳能电池获得的最高效率为20.58%,ZnO缓冲层层为20.58%。基于ZnO缓冲液的太阳能电池的温度梯度为-0.355%/K,而基于CDS缓冲液的太阳能电池为-0.347%/k。这项工作的发现提供了重要的指导,以制造具有无毒ZnO作为潜在缓冲层的高效Mose 2薄膜太阳能电池。2023年11月29日收到;公认的2024年2月15日)关键字:Mose 2,Scaps-1d,太阳能电池,缓冲层,温度,效率
分层材料可以组装新类的异质结构,其中不再需要晶格匹配。界面成为未开发物理的肥沃地面,因为可以通过接近效应耦合不同的现象。在本文中,当Mose 2与Tise 2相互作用时,我们确定了意外的光致发光(PL)峰。一系列依赖温度依赖性和空间分辨的PL测量结果表明,与中性激子相比,该峰是Tise 2 - Mose 2界面所独有的,能量更高,并且具有激子样特性。该特征在Tise 2电荷密度波转变下消失,这表明密度波在这种新激子的形成中起着重要作用。我们提出了有关该峰的起源的几个合理的方案,这些方案单独捕获了我们观察的某些方面,但无法完全解释此功能。因此,这些结果代表了理论社区的新挑战,并通过与电荷密度波的相互作用来设计一种令人着迷的方法来设计激子。©2022作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0067098
摘要:单层过渡金属二硫属化物 (TMD) 为研究二维 (2D) 极限下的激子态提供了平台。TMD 中激子的固有属性,例如光致发光量子产率、电荷态甚至结合能,可以通过静电门控、选择性载流子掺杂或基底电介质工程进行有效控制。本文,为了实现激子态的非挥发性电可调性,从而实现 TMD 的光学属性,我们展示了一种具有单层 MoSe 2 和超薄 CuInP 2 S 6 (CIPS) 的二维铁电异质结构。在异质结构中,CIPS 的电极化导致单层 MoSe 2 中出现连续、全局和大的电子调制。利用 CIPS 的饱和铁电极化,可以在单个器件中实现电子掺杂或空穴掺杂的 MoSe 2。异质结构中载流子密度可调性高达 5 × 10 12 cm − 2 。还表征了这些器件长达 3 个月的非挥发性行为。我们的研究结果为低功耗和长期可调的光电器件提供了一种新的实用策略。关键词:激子、MoSe 2 、CuInP 2 S 6 、铁电性、2D 铁电异质结构■引言
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
p1.1 2d Andreas BeerUniversitätRegensburg接近性诱导的交换交互和动态电荷转移在Mose2/Crsbr van-der-waals异质结构带有正交旋转纹理
