摘要:神经调节的领域缺乏影响可塑性个体差异的预测指标,这些差异会影响对重复的经颅磁刺激(RTMS)的反应。连续的theta爆发刺激(CTB)是一种以其抑制作用而闻名的RTM的形式,显示了个体之间的可变反应,这可能是由于神经可塑性的差异所致。预测单个CTBS效应可以极大地增强其临床和实验效用。本研究探讨了在神经调节之前测量的电动机诱发电位(MEP)输入输出(IO)参数是否可以预测运动皮层对CTB的反应。IO曲线是通过记录在一系列单脉冲TMS强度上的MEP来从健康成年人中取样的,以获得包括MEP Max和S 50(中点强度)在内的参数。后来比较了刺激前后的Moto Cortex及其MEP的相同位置的CTB。MEP Max和S 50都预测了响应,与CTB后10、20和30分钟的个人MEP变化显着相关(P <0.05,R 2> 0.25)。此外,我们介绍并验证了一种易于实现的生物标志物,该标志物不需要全IO曲线的耗时抽样:MEP 130RMT(中位数为10 MEP,在130%RMT)。MEP 130RMT也是CTBS响应的强有力预测指标(P <0.005,r 2> 0.3)。与先前研究的RTMS响应(BDNF多态性)的遗传生物标志物的头对头比较表明,基于IO的预测因子在解释更多响应变异性方面具有出色的性能。关键字:输入输出曲线,CTB,预测变量因此,在CTBS给药之前得出的IO曲线可以可靠地预测CTB诱导的皮质兴奋性变化。这项工作指向RTMS诊断和治疗应用中调整刺激程序的无障碍策略,并可能提高对其他大脑刺激方法的反应率。
EMA Accepts Marketing Authorization Application for ND0612, an Investigational Treatment for Motor Fluctuations in Parkinson's Disease Mitsubishi Tanabe Pharma Corporation (Head Office: Chuo-ku, Osaka; Representative Director: Akihiro Tsujimura; hereinafter, “MTPC”), a member of the Mitsubishi Chemical Group, today announced the European Medicines Agency (EMA) has接受审查ND0612的营销授权申请(MAA),这是2月20日(当地时间)的帕金森氏病(PD)运动波动的研究治疗方法。ND0612由MTPC全资子公司Neuroderm Ltd.开发(总部:以色列Rehovot;首席执行官:Kengo Isshiki)。MAA是由三菱Tanabe Pharma GmbH(总部:德国杜塞尔多夫)提交给EMA的,该程序适用于欧盟所有成员国(EU),冰岛,挪威和挪威和Liechtenstein。MAA得到了ND0612的全球3阶段无限试验的功效,安全性和耐受性数据的支持。PD是一种进步的慢性神经系统疾病,影响了全球超过1000万患者。*最常用的PD疗法涉及LD口服给药,通过补偿降低多巴胺以及LD降解抑制剂(通常CD)来补充多巴胺缺乏症,这表明了反帕金森氏症的作用。*谁有帕金森氏症?帕金森基金会。但是,口服LD摄入可能会长期导致运动波动,例如由于药物过度影响而引起的非自愿运动(运动障碍),并且该药物不再像以前那样有效地工作。随着PD的进展,除了增加运动波动的风险外,口腔疗法的调整在管理疾病的症状方面的有效性降低。nd0612,每天24小时,连续的地下输注LD/CD,旨在稳定LD的血液水平,改善药代动力学特征,准时延伸而没有麻烦的不良运动障碍并减少PD成人的休息时间。除了欧洲的应用外,MTPC组还在将其ND0612的新药物应用(NDA)重新提交给美国食品药品监督管理局(FDA)。MTPC组专注于与中枢神经系统疾病有关的研发,并继续为所有面临神经退行性疾病的新治疗选择创造新的治疗选择。https://www.parkinson.org/understanding-parkinsons/statistics#:~: text = more%20than%2010%200万%20万%20亿20 peoplehttps://www.parkinson.org/understanding-parkinsons/statistics#:~: text = more%20than%2010%200万%20万%20亿20 people
海洋与地球科学,南安普敦大学,南安普敦,英国B海洋科学学院 Sciences, University of California, Los Angeles, Los Angeles, California f Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel g Woods Hole Oceanographic Institution, Woods Hole, Massachusetts h National Oceanography Centre, Southampton, United Kingdom i British Antarctic Survey, Cambridge, United Kingdom j NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey k Program in Atmospheric和海洋科学,普林斯顿大学,新泽西州普林斯顿大学
摘要 - 使用自然语言与机器人沟通的能力是人类机器人互动的重要一步。但是,将口头命令准确地转化为身体动作是有希望的,但仍然带来挑战。当前的方法需要大型数据集来训练模型,并且最大自由度的机器人仅限于机器人。为了解决这些问题,我们提出了一个称为instructrobot的框架,该框架将自然语言指令映射到机器人运动中,而无需构建大型数据集或机器人的运动学模型的先验知识。Instructrobot采用了一种强化学习算法,该算法可以联合学习语言表示和逆运动学模型,从而简化了整个学习过程。使用复杂的机器人在对象操纵任务中具有26个Revolute关节的复杂机器人进行验证,以证明其在现实环境中的鲁棒性和适应性。该框架可以应用于数据集稀缺且难以创建的任何任务或域,使其成为使用语言通信训练机器人挑战的直观且易于访问的解决方案。可以从https://github.com/icleveston/instructrobot访问instructrobot框架和实验的开源代码。
摘要:背景/目标:与早产儿相比,与运动结果相比,先前的评论证明了早期干预措施对认知的益处更强。可能是,运动发育需要更多针对性的干预措施,包括至少有活动的电动机组件。但是,尽管神经运动延迟的风险增加了,但没有概述重点是早产婴儿的这种干预措施。方法:系统地搜索了有关早产婴儿的早期干预措施的(准)随机对照试验的(准),神经运动延迟的风险各不相同,并且包括在第一年内开始进行主动运动组件的试验。提取了研究数据和参与者特征。使用偏见2工具的风险评估了偏差的风险。结果:包括25个报告,包括21个独特(准)RCT,并被归类为基于纯运动的干预措施(n = 6)或以家庭为中心的干预措施(n = 19)。是基于运动的干预措施,干预后立即改善了运动结果,其中之一分别在随访中进行了,分别进行了五种和以家庭为中心的方法。只有五项以家庭为中心的研究评估了五岁以上的长期影响,发现没有比标准护理更大的疗效。总体而言,在纳入的研究之间进行干预强度,类型和结果存在较大的变化。结论:尽管有方法上的异质性损害了结论,但对运动结果的影响有限,特别是长期结局。包括以家庭为中心的方法嵌入的更强的以运动为中心的成分可能会增加对运动结果的影响,这对于出现神经运动延迟的早期迹象的婴儿特别感兴趣。
1。实施适当的电池产品管理立法,其中包括扩展生产者的职责。2。转向强制性的国家产品管理计划,以确保捕获所有松散和嵌入电池的生产者和进口商,并为减轻终止风险以及处置和恢复成本做出贡献。3。通过资助来支持地方政府的努力,管理和减轻与废物服务和基础设施相关的电池相关风险。GRC战略一致性公司计划 - 弹性经济
方法:在这项研究中,我们的目的是研究大脑额叶的不对称激活是否有助于描述消费者的选择。为了获得更强的实验控制,我们在虚拟现实零售店设计了一个实验,同时使用脑电图 (EEG) 记录参与者的大脑反应。在虚拟商店测试期间,参与者完成两项任务;首先,从预先定义的购物清单中选择商品,我们将这一阶段称为“计划购买”。其次,受试者被告知他们也可以选择不在清单上的产品,我们将其标记为“计划外购买”。我们假设计划购买与更强的认知参与有关,而第二项任务更依赖于即时的情绪反应。
人类机器人协作(HRC)依赖于对人类意图的准确和及时认识以确保无缝相互作用。在常见的HRC任务中,已经广泛研究了人身到机器人的对象移交,以计划在对象接收期间的机器人行动,假设人类的对象移交意图。但是,将移交意图与其他动作区分开来,受到了有限的关注。大多数对Han-Dovers的研究都集中在视觉检测运动轨迹上,这通常会导致轨迹重叠时延迟或错误检测。本文研究了人类对物体移交的意图是否反映在基于非运动的生理信号中。我们进行了比较三种数据模式的多模式分析:脑电图(EEG),凝视和手动信号。我们的研究旨在区分HRC环境中的移交预期的动作和非移交动作,从而评估每种形态在预测和之后人类运动开始之前和之后对这些行为进行分类时的表现。我们根据这些方式开发和评估人类意图探测器,比较它们在识别切换意图方面的准确性和时机。据我们所知,这是在人类机器人移交的相同实验环境中系统地开发和测试意图探测器的第一项研究。 我们的分析表明,移交意图可以是据我们所知,这是在人类机器人移交的相同实验环境中系统地开发和测试意图探测器的第一项研究。我们的分析表明,移交意图可以是
摘要:了解火星卫星的内部结构(例如,均质、多孔或破碎)将有助于更好地理解它们的形成以及早期太阳系。推断内部结构的一种方法是通过大地测量特征,例如重力场和天平动。大地测量参数可以从辐射跟踪测量中得出。本研究提出了一种可行的母舰-立方体卫星任务,其目的如下:(1)进行卫星间多普勒测量,(2)提高对火卫一及其动态模型的理解,(3)确保母舰和主要任务的安全,(4)考虑到地球和火星之间的距离,支持自主导航。本研究分析了体积、质量、功率、部署∆v和链路的预算以及系统的多普勒测量噪声,并给出了立方体卫星的可行设计。通过考虑所有不确定性的蒙特卡罗估计模拟揭示了轨道确定和大地测量的准确性。在火星-火卫一系统星历误差为 0 至 2 公里的情况下,自主轨道确定的精度为 0.2 米至 21 米和 0.05 毫米/秒至 0.4 厘米/秒。即使在星历误差为 2 公里的情况下,大地测量系统也可以以 1‰ 的精度返回 2 级重力系数。所获得的重力系数和平动幅度协方差表明,区分内部结构系列具有极好的可能性。
™找到您的最佳解决方案。enersys®从为您的车队选择正确的电源系统进行手动计算和猜测。我们将您的车队的功率数据与我们的Advance Ensite™仿真系统结合在一起,以找到支持您运营的解决方案,同时降低所有权成本。与您的本地enersys®代表联系以了解更多信息。