鳞翅目的顺序涵盖了蝴蝶和飞蛾,鳞翅目中的许多物种在生态系统动力学中起关键的授粉媒介起着关键作用。飞蛾在此顺序中占绝大多数,是印度次大陆生物多样性的重要贡献者,拥有超过12,000种已知物种。尽管具有生态意义,但我们对印度蛾多样性的理解仍然不完整。本研究通过对2019年5月至2021年12月之间的喀拉拉邦的飞蛾进行重点调查来解决这一知识差距。利用一种标准化方法,涉及蛾子和汞蒸气灯泡的飞蛾捕获,我们记录并分析了483种跨越44个家庭的蛾类。值得注意的是,这项调查首次记录了喀拉拉邦的palaeosetidae家族的存在,其中包括以前仅从卡西山(Khasi Hills)报道的两种物种。此外,据报道,据报道,印度的Corgatha Semipardata和Cirrhochrista Fuscusa在印度南部的存在。飞蛾的时间活动模式揭示了有趣的变化,细致的识别过程导致各种分类学水平的分类。埃里比迪(Erebidae)成为最特殊的家族,主要是在城市地区,而crambidae,Geometridae和Noctuidae在高海拔地区繁荣发展,表明栖息地多样性。此外,这项研究阐明了识别没有试样的飞蛾的挑战,特别是对于微层翅目而言,这需要在该领域进行进一步的研究。大斑属毛虫的观察表明,迁移的可能性,为未来对飞蛾运动模式的研究开辟了途径。总而言之,我们的研究强调了喀拉拉邦中部的飞蛾多样性,并强调了保护生态系统和城市地区寄主植物的重要性。在提供有价值的见解的同时,这项研究承认其持续时间有限,并呼吁进行广泛的研究以全面评估该地区的蛾类物种丰富度,为未来的研究奠定了关键的基础,该研究集中于蛾多样性。
引言昆虫是地球上最多样化,最大的生物群,包括大约30个订单和近一百万个描述的物种。他们占所有描述的物种的75%,居住在包括南极洲在内的几乎所有栖息地和大陆上的土地,水和空气。节肢动物,最多样化的动物群,占地球上所有动物物种的三分之二以上。linnaeus在1758年描述的鳞翅目包括蝴蝶和飞蛾。“ Lepidoptera”一词来自希腊语单词“ lepis”(scale)和“ ptera”(翅膀)。与约180,000种,它们分布在126个家庭中(Capinera。et。al。,2008)[8]和46个超家族(槌槌。et。al。,2007)[12],占所有描述的生物体的百分之十。鳞翅目是全球最广泛,最广泛认可的昆虫秩序之一(Powell。et。al。,2009)[29]。鳞翅目在身体结构方面表现出许多变化,这些变化已演变为在生命和分布中提供益处。飞蛾,蝴蝶的表兄弟,属于这个命令。记录蛾多样性可以提供进化见解,并有助于为鳞翅目昆虫制定保护目标。这项研究旨在探索马哈拉施特拉邦巴拉马蒂及其周围周围的飞蛾多样性,这在很大程度上没有被评估。鳞翅目物种丰富度随栖息地异质性而增加,支持资源和结构多样性促进更大的生物多样性的范式。六角洲类中最多样化和第二大阶是鳞翅目(Benton,1995)[6]。他们提供关键的生态系统服务,例如授粉,分解和营养循环。鳞翅目,包括蝴蝶和飞蛾,在森林生态系统和农业领域很常见,通常被称为生态系统的生物学指标。印度的蛾动物群是众所周知的,在英国政府期间,在20世纪,特别是在马哈拉施特拉邦的20世纪之前的调查有限。鳞翅目Indica的第一卷发表于1890年,这些出版物仍然是鳞翅目上最好,最全面的作品之一。近年来,研究人员已将鳞翅目用作模型生物,以探索人造活动和污染对生态系统的影响。他们执行必不可少的生态系统服务,并表现出作为森林健康指标的希望(Kitching等,2000)[23],以及其他昆虫群(例如膜翅目)多样性的代理。
Benelli等。 (2023)最近回顾了欧洲葡萄蛾(EGVM)洛伯西亚botrana(Denis&Schiffermüller)(Lepidoptera:Tortricidae)的生物学,生态和侵入性,概述了新的研究进展。 其控制的策略从Götz(1939)的开拓者作品开始,他们首先表明EGVM女性能够吸引男性交配。 在第一个性信息素(1959年)对第一个性信息素化学鉴定之前,他预先将基于信息素的控制的概念预先鉴定。 甚至在以前,Silvestri(1912),Feytaud(1913)和Marchal(1912)进行了有关EGVM生物学和自然敌人的第一个关键自然史研究。 值得注意的是,他们的研究中已经将一些生物防治问题视为未来的有效控制选择。 有趣的是,在合成杀虫剂发作之前的几十年,卵寄生虫trichogramma spp。 (膜翅目:trichogrammatidae),昆虫病作用真菌和有效的幼虫寄生虫,坎普莱克斯·帕皮塔(Campoplex Cackoplex Capoplex Capoplex tor Aubert(Hymenoptera:iChneumonidae)),由几位作者研究(Coscollá1997; ioriatti et al。 2012; Reineke&Thiéry2016; Thiéry等。 2018)。Benelli等。(2023)最近回顾了欧洲葡萄蛾(EGVM)洛伯西亚botrana(Denis&Schiffermüller)(Lepidoptera:Tortricidae)的生物学,生态和侵入性,概述了新的研究进展。其控制的策略从Götz(1939)的开拓者作品开始,他们首先表明EGVM女性能够吸引男性交配。在第一个性信息素(1959年)对第一个性信息素化学鉴定之前,他预先将基于信息素的控制的概念预先鉴定。甚至在以前,Silvestri(1912),Feytaud(1913)和Marchal(1912)进行了有关EGVM生物学和自然敌人的第一个关键自然史研究。值得注意的是,他们的研究中已经将一些生物防治问题视为未来的有效控制选择。有趣的是,在合成杀虫剂发作之前的几十年,卵寄生虫trichogramma spp。(膜翅目:trichogrammatidae),昆虫病作用真菌和有效的幼虫寄生虫,坎普莱克斯·帕皮塔(Campoplex Cackoplex Capoplex Capoplex tor Aubert(Hymenoptera:iChneumonidae)),由几位作者研究(Coscollá1997; ioriatti et al。2012; Reineke&Thiéry2016; Thiéry等。2018)。
neemazal-t / s / oikos azadirachtin a tracer spinosad b c costar wg /二倍DF云母云母云母育苏属硫酸亚元。kurstaki a a管道IndoxaCarb b B b a altacor氯氨酸甲基氨基利因a vertimec gold / vectine plus ac abamectin b c tutavir肉芽肿phopgv* a a a < / div> a < / div>
Divya Rawat 1,Pushpendra Singh 2 1,2电气工程系,政府。女子工程学院,印度AJMER-305002摘要蛾火焰优化(MFO)算法是Swarm Intelligence家族的成员,可用于解决各个现实世界中的复杂优化问题。MFO及其不同的变化,可以简单地理解和易于操作。这些算法在解决诸如电力和能源系统,工程设计,经济调度,图像处理和医疗应用等各个领域的优化问题方面取得了巨大成功。这篇全面的评论探讨了MFO的不同变体,包括经典版本,二进制类型,修改版本,混合版本,多目标版本以及不同扇区中MFO算法的应用方面。此外,提出了MFO算法的评估以评估其相对于其他算法的性能。该文献的主要重点是对MFO及其应用进行调查和分析。此外,总结的评论部分深入研究了MFO算法及其变体的潜在研究方向。关键字:飞蛾火焰优化(MFO),蛾火焰优化算法(MFOA),复杂优化,MFO分析,应用程序。1。辛格拉姆 - 弗拉姆优化算法是一种新的元启发式优化方法,该方法是由Seyedali Mirjalili在2015年提出的,基于夜间特殊导航方法的飞蛾行为的模拟。他们利用一种称为横向方向的机制进行导航。在这种方法中,飞蛾通过保持相对于月球的固定角度而飞行,这是一种非常有效的机制,可以在直路上长距离行驶,因为月球远离飞蛾。这种机制确保了夜间直线飞翔的飞蛾。但是,我们通常会观察到飞蛾在灯光周围螺旋飞行。实际上,飞蛾被人工灯所欺骗并表现出这种行为。由于这种光非常接近月球,因此,保持与光源相似的角度会导致飞蛾的螺旋蝇路径。在MFO算法中,飞蛾以对数螺旋的方式在火焰中飞来飞去,并最终汇聚到火焰。螺旋方式表示勘探区域,并确保利用最佳解决方案。优化是指为特定问题找到最佳解决方案的过程。随着问题的复杂性增加,在过去的几十年中,对新优化技术的需求比以前更为明显。数学优化技术曾经是在提出启发式优化技术提出之前优化问题的唯一工具。数学优化方法主要是遇到一个主要问题的确定性:local
增加农作物中的甜菜蛾和第二代银y毛毛虫的迹象。在整个生长的地区都可以发现广泛但水平较低的叶面疾病;包括尾孢子。因此,请检查农作物,生锈和白粉病,在当前天气情况下,它们都在不同程度上受到不同程度。目标品种具有较低的疾病评级,以进行初步评估,但也保留了其他疾病。保持杂草甜菜和炸牛肉的顶部 - 如果有疑问,请“将它们拉出!”请访问BBRO秋季事件,以查看2025种种类,更多地了解Cercospora和疾病控制,以及BBRO工作中有关农作物使用的最新信息。收听八月的甜菜演员进行覆盖作物讨论,并与糖的追赶
抽象承诺提供强大的遗传控制工具,基因驱动器是在多个双翅目,酵母和小鼠中构建的,以消除人群消除或修改。但是,尚不清楚这些技术是否可以应用于鳞翅目。在这里,我们使用内源性调节元件在响尾蛇飞蛾(DBM),木制紫罗兰氏菌中驱动CAS9和单引导RNA(SGRNA)表达,并在鳞翅目中测试第一个分裂基因驱动系统。DBM是经济上重要的全球农业害虫,对各种杀虫剂产生了严重的抵抗力,使其成为这种新型控制策略发展的主要候选者。在Cas9/sgrna transhepleozygotes中观察到了很高的体细胞编辑,尽管在随后的一代中没有揭示出显着的归宿。观察到Heritable Cas9介绍的种系裂解以及母体和父亲Cas9沉积,但在选定调节元素的控制下,速率远低于体细胞裂解事件,表明Cas9/sgrna的种系活性有强大但有限。我们的结果提供了宝贵的经验,为DBM和其他鳞翅目中基因驱动器或其他基于CAS9的基因控制策略铺平了道路。
背景皮肤飞蛾monopis laevigella(Denis&Schiffermüller,1775年)是Tineidae家族的飞蛾。它的英语白话名称源自幼虫的喂养习惯,这些习惯以众多动物衍生的物质(例如鸟巢,腐肉,猫头鹰和鸟类)为食(Boyes,2018b; Pelham-Clinton,1985年)。因此,该物种在不列颠群岛内非常普遍,甚至在圣基尔达,奥克尼和设得兰群岛的群岛中也发现(Pelham-Clinton,1985)。在全球范围内,该物种的分布在欧洲,北美(以前在那里被确定为M. rusticella)和亚洲,在中国向东到Shaanxi省(Xiao&Houhun,2006年)。该物种在北大西洋中广泛发现,在冰岛很丰富,并从格陵兰岛记录。在法罗群岛(Faroe Islands)中,该物种被认为是同生型的,在未加热的附属建筑中的动物物质(例如羊毛)繁殖(Kaaber,2010年)。相比之下,圣基尔达(St Kilda)的人口似乎在海悬崖上而不是(以前的)人类居住,大概是以海鸟的鸟粪为食(Pelham-Clinton,1985)。
那么,家养蚕蛾和红蚕蛾诱导休眠的机制究竟有何不同呢?为了研究这一问题,该研究小组利用基因组编辑技术(TALEN系统)创建了蚕蛾温度传感器的KO品系。人们认为这种品系无法检测与休眠诱导有关的胚胎阶段的温度,但发现休眠是由幼虫日照长度条件决定的,与红蚕蛾类似。换言之,休眠卵是在短日照条件下产下的,非休眠卵是在长日照条件下产下的。
背景寡核心(大理石小核心)是英国非常相似的寡寡头物种的三人之一。应安全地识别O. strigilis,O。Latruncula或O. versicolor,应检查生殖器。大理石小的小趋势尤其是用白色和棕色/黑色标记的,但与其他物种的外观有很多重叠,而在这三种物种中均经常出现黑色素形式。雄性生殖器是独特的,在O. strigilis中具有长而薄的竖琴(或“ clasper”),而女性则由bursae和antrum的尖锐的交界处鉴定出来(参见Townsend等人,2010年)。基因组组装来自雄性,并通过生殖器检查以及通过DNA条形码确认了鉴定。南(南部,1907年),在他对英国飞蛾的影响力很大(Grb在开始捕获时,它在开始捕获时很广泛,尽管他还不太老),将这三个物种视为一个物种,大理石大小,并且它们经常被混合在一起以录制,作为一种物种,是一种物种。南(南部,1907年),在他对英国飞蛾的影响力很大(Grb在开始捕获时,它在开始捕获时很广泛,尽管他还不太老),将这三个物种视为一个物种,大理石大小,并且它们经常被混合在一起以录制,作为一种物种,是一种物种。