半导体表面上的原子单层代表了二维极限的新兴功能量子材料 - 从超导体和莫特绝缘体到铁电和量子旋转厅绝缘子的范围。indenene是iDenene的iDenene,含量约为120 MeV的im依的三角形单层是一种量子自旋霍尔绝缘子,其微米尺度的SIC上的显式外延生长(0001)使其在技术上具有相关性。然而,它对室温旋转的适合性受到空气中拓扑特征的不稳定的挑战。必须制定一种在现场加工和装置制造过程中保护indenene拓扑性质的策略。在这里,我们表明,将泛烯烯酮插入到外延石墨烯中,可以有效地保护氧化环境,同时保留完整的拓扑特征。我们的方法开放了一个现有实验机会的丰富领域,启动单层量子旋转厅绝缘子,以实现逼真的设备制造并访问拓扑保护的边缘通道。
作者:迈克·萨德(多伦多大学和生病儿童医院)黎明·伊拉迪(亚特兰大儿童医院)瓦莱丽·罗弗格(Valerie Rofeberg)(波士顿儿童医院)辛西娅·奥尔蒂纳(Cynthia Childris Hospital Elhoff(Sunrise儿童医院/Pediatrix医疗小组)Amy Lisanti(宾夕法尼亚大学护理学院)Jennifer Butcher(C.S.莫特儿童医院)凯特琳·罗林斯(波士顿儿童医院)安德鲁·范·贝根(Andrew van Bergen)(倡导者儿童医院)Shabnam Peyvandi(UCSF医学院)Emily Bucholz(科罗拉多州儿童医院)斯蒂芬尼·考克斯(Colorado)史蒂芬·科克斯(Rady Cox儿童医院医院)Shruti Tewar(阿肯色州儿童医院)Kiona Allen(Lurie儿童医院)Caroline Lee(华盛顿大学医学院)Kristi Glotzbach(犹他大学)Nneka Alexander(亚特兰大儿童医疗保健)中心)蕾妮·萨纳斯(Renee Sananes)(病假医院)Linh(病假医院)Gina Boucher(Phoenix儿童)Kelly Wolfe(科罗拉多州科罗拉多大学医学院)Lindsay Edwards(杜克大学医学院)医院 - 德拉瓦雷)安贾利·萨德瓦尼(Boston儿童医院)卡里工厂(中庭健康莱文儿童医院)劳伦·奎利(Lauren Quigley)(匹兹堡儿童医院)杰西卡·普里戈(Jessica Pliego)(戴尔儿童)伊丽莎白·瓦利斯(Elizabeth Children's)
作者:迈克·萨德(多伦多大学和生病儿童医院)黎明·伊拉迪(亚特兰大儿童医院)瓦莱丽·罗弗格(Valerie Rofeberg)(波士顿儿童医院)辛西娅·奥尔蒂纳(Cynthia Childris Hospital Elhoff(Sunrise儿童医院/Pediatrix医疗小组)Amy Lisanti(宾夕法尼亚大学护理学院)Jennifer Butcher(C.S.莫特儿童医院)凯特琳·罗林斯(波士顿儿童医院)安德鲁·范·贝根(Andrew van Bergen)(倡导者儿童医院)Shabnam Peyvandi(UCSF医学院)Emily Bucholz(科罗拉多州儿童医院)斯蒂芬尼·考克斯(Colorado)史蒂芬·科克斯(Rady Cox儿童医院医院)Shruti Tewar(阿肯色州儿童医院)Kiona Allen(Lurie儿童医院)Caroline Lee(华盛顿大学医学院)Kristi Glotzbach(犹他大学)Nneka Alexander(亚特兰大儿童医疗保健)中心)蕾妮·萨纳斯(Renee Sananes)(病假医院)Linh(病假医院)Gina Boucher(Phoenix儿童)Kelly Wolfe(科罗拉多州科罗拉多大学医学院)Lindsay Edwards(杜克大学医学院)医院 - 德拉瓦雷)安贾利·萨德瓦尼(Boston儿童医院)卡里工厂(中庭健康莱文儿童医院)劳伦·奎利(Lauren Quigley)(匹兹堡儿童医院)杰西卡·普里戈(Jessica Pliego)(戴尔儿童)伊丽莎白·瓦利斯(Elizabeth Children's)
目录 1 简介 1 2 概述 5 (a) 任命 Mott 为教授 8 (b) 宇宙射线研究的开始 10 (c) 其他战前研究 12 (d) 战后规划 15 第 2 章附录 18 3 管理 (a) 组织和委员会 20 (b) 实验室主任 27 (c) 政策和规划 31 4 研究和研究人员 (a) 理论物理 41 (b) 宇宙射线和粒子物理 50 (c) 实验固体物理 59 (d) 应用光学 65 (e) 聚合物 74 5 教学 (a) 院系历史 79 (b) 物理课程 86 (c) 实验室工作和辅导 93 (d) 考试和评估 98 (e) 研究生教学 103 (f) 课外教学106 6 校舍 107 7 统计资料 (a) 本科生人数 118 (b) 存活率 126 (c) 申请与录取 129 (d) 研究生人数 133 (e) 教职员工 134 (f) 非教职员工 136 8 财务 (a) 总体调查 138 (b) 鲍威尔和宇宙射线研究 141 (c) 研究生资助 143
1 美国密苏里州堪萨斯城儿童仁慈医院沃德家庭心脏中心,2 美国密苏里州堪萨斯城密苏里大学医学院,3 美国纽约州纽约市哥伦比亚大学欧文医学中心儿科系儿科心脏病学分部,4 美国马萨诸塞州波士顿波士顿儿童医院心脏病学系,5 美国密苏里州圣路易斯华盛顿大学医学院儿科系儿科心脏病学分部,6 美国伊利诺伊州芝加哥芝加哥安与罗伯特 H. 卢里儿童医院儿科系心脏病学分部,7 美国华盛顿州西雅图西雅图儿童医院儿科系心脏病学分部,8 美国纽约大学朗格尼分校哈森菲尔德儿童医院儿科系儿科心脏病学分部美国纽约州约克市,美国俄亥俄州辛辛那提市辛辛那提儿童医院医疗中心心脏研究所儿科心脏病科,美国密歇根州安娜堡市 CS Mott 儿童医院儿科部儿科心脏病科
课程成果 成功完成本课程后,学生将能够 CO1:构建简单的数学证明并具备验证它们的能力。 CO2:通过命题和谓词逻辑的形式语言表达数学属性。 CO3:理解和分析递归定义。 CO4:使用图算法解决实际问题。 CO5:使用布尔代数的性质评估布尔函数并简化表达式。 书籍和参考文献 1. 《离散数学要素》,CL Liu、Tata McGraw-Hill 著。 2. 《组合数学导论》,RA Brualdi、Pearson 著。 3. 《面向计算机科学家和数学家的离散数学》,JL Mott、A. Kandel 和 TP Baker、Prentice Hall India 著。 4. 《图论》,F. Harary、Narosa 著。 5. 《离散数学及其应用》,T. Koshy 著,Academic Press 出版 6. 《离散数学及其应用》,KH Rosen 著,Tata McGraw-Hill 出版。 7. 《离散数学结构及其在计算机科学中的应用》,J. Tremblay 著,R. Manohar 著,Tata McGraw-Hill 出版。
作为第一步,我们将开发一项超快实验,该实验基于适当数量的相位相干超短光脉冲的组合,以选择性地激发固体。我们将特别努力通过非共线光学参量放大器合成短至 10 飞秒的光脉冲(与米兰理工大学的 Giulio Cerullo 教授合作)。同时,我们将开发合适的理论模型来处理超快时间尺度和相互作用环境中的量子动力学。 作为第二步,我们将研究各种关联材料中的电子退相干动力学,例如 LaVO 3 和 V 2 O 3 ,它们是关联驱动的莫特绝缘体的典型例子。通过结合实验和理论结果,我们将探讨通过调整系统的温度、应变、激发协议和化学性质来增强退相干时间的可能性。我们还将研究相干操控 V 2 O 3 中的光诱导绝缘体到金属转变的可能性,以及可能相干控制其他系统中的相变(例如氧化铜中的超导性)。
具有巡回自由度和本地化自由度的量子材料表现出许多异国情调的相位和过渡,它们偏离了金茨堡 - 兰道范式。这项工作使用复合算子形式 - ISM检查双层强烈相关的哈伯德模型。我们观察到层对称性的自发断裂,其中层中的电子密度达到半填充,从而导致层选择性莫特相(LSMP)。这个断裂的对称阶段在远离半填充的临界平均电子密度下变得不稳定。此外,显着的层分化持续到中等的层间跳,超越该系统突然过渡到层均匀相(LUP)。在LSMP相中,两层中的电子被弱杂交,导致小费米表面。在从LSMP到均匀相的过渡时,费米表面的体积跳跃。我们还讨论了导致不同扰动下LSMP阶段崩溃的物理机制。
摘要 我们报告了使用双点动态平均场理论 (DMFT) 对单波段哈伯德模型进行量子经典模拟。我们的方法使用 IBM 的超导量子比特芯片在时间域中计算零温度杂质格林函数,并使用经典计算机拟合测量的格林函数并提取其频域参数。我们发现量子电路合成 (Trotter) 和硬件错误会导致频率估计不正确,随后导致从自能的频率导数计算时准粒子权重不准确。这些错误会产生错误的杂化参数,从而阻止 DMFT 算法收敛到正确的自洽解。为了避免这个陷阱,我们通过对谱函数中的准粒子峰进行积分来计算准粒子权重。这种方法对 Trotter 误差的敏感度要低得多,并且在将量子误差缓解技术应用于量子模拟数据后,算法可以收敛到半填充 Mott 绝缘系统的自洽性。
3 M. Vladimirova, T. Guillet (poster) Ridge Polariton Laser: Towards a short laser on chip for integration H. Souissi (Oral), T. Guillet, M. Gromovyi, T. Gueye, C. Brimont, L. Doyenne, G. Kreyder, F. Réveret, P. Dwwnix, F. Médard, J. Leymarie, G. Malpuech, D. Solnyshkov, B. Aling, S. Rennesson, F. Semond, J. Zuniga-Spenz, E. Cambril, S. Bouchouule Electrical Control of Excitons in Gan/(al, Ga) n quantum Wells R. Aristagu (Oral), F. Chiaruttini, B. Jouault, P. Lefebvre, C. Brimont, T. Guillet, M. Vladimirova,S。Chenot,Y。Cordier,B。Damilano3 M. Vladimirova, T. Guillet (poster) Ridge Polariton Laser: Towards a short laser on chip for integration H. Souissi (Oral), T. Guillet, M. Gromovyi, T. Gueye, C. Brimont, L. Doyenne, G. Kreyder, F. Réveret, P. Dwwnix, F. Médard, J. Leymarie, G. Malpuech, D. Solnyshkov, B. Aling, S. Rennesson, F. Semond, J. Zuniga-Spenz, E. Cambril, S. Bouchouule Electrical Control of Excitons in Gan/(al, Ga) n quantum Wells R. Aristagu (Oral), F. Chiaruttini, B. Jouault, P. Lefebvre, C. Brimont, T. Guillet, M. Vladimirova,S。Chenot,Y。Cordier,B。Damilano