文本对图像模型的当前指标通常依赖于不足以代表人类真正偏好的统计指标。尽管最近的工作试图通过人类注释的图像来学习这些偏好,但它们将人类偏好的丰富挂毯降低到单个总分。然而,当人类评估不同方面的图像时,偏好会有所不同。因此,为了学习多维人类偏好,我们提出了多维偏好评分(MPS),这是评估文本对图像模型的第一个多维偏好评分模型。MPS引入剪辑模型上的偏好条件模块,以学习这些不同的偏好。它是根据我们的多维人类偏好(MHP)数据集进行了训练的,该数据集包括607,541图像的四个维度(即美学,语义一致性,详细信息,详细质量和整体评估)的918,315个人类偏好选择(即,美学,语义一致性,细节质量和整体评估)。这些信息是由各种最新的文本对图像模型生成的。MPS在4个维度上的3个数据集上优于现有的评分方法,从而使其成为评估和改进文本对象的有希望的指标。该模型和数据集将被公开使用,以促进未来的研究。项目页面:https://wangbohan97.github.io/mps/。
图2。平面和Triplanar网络的想法。(a)将轴向平面网络从轴向图像进行训练的CA,CCSA和SCSA网络的分割结果组合在一起以产生结果。同样,我们可以创建冠状合奏和矢状 - 合奏。(b)Triplanar网络的概述,在该网络中,从轴向,冠状图像和矢状图像中训练的单个注意网络(例如,CA网络)产生的分段结果合并为生成结果。通过在三个正交平面训练的CCSA和SCSA注意网络中生成类似的分段结果。
近年来,基于锚点的方法在多视图聚类中取得了可喜的进展。这些方法的性能受到锚点质量的显著影响。然而,以前的研究生成的锚点仅仅依赖于单视图信息,忽略了不同视图之间的相关性。特别地,我们观察到相似的模式更有可能存在于相似的视图之间,因此可以利用这种相关性信息来提高锚点的质量,而这同样被忽略了。为此,我们提出了一种新颖的即插即用的通过视图相关性进行多视图聚类的锚点增强策略。具体而言,我们基于对齐的初始锚点图构建视图图来探索视图间相关性。通过从视图相关性中学习,我们使用相邻视图上锚点和样本之间的关系来增强当前视图的锚点,从而缩小相似视图上锚点的空间分布。在七个数据集上的实验结果证明了我们的方法优于其他现有方法。此外,大量的对比实验验证了所提出的锚增强模块应用于各种基于锚的方法时的有效性。
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
●分析:解释财务,能源和排放数据;为市议会,大学和公司领导以及公众撰写报告和计划;监测行业的进步和政策;并进行研究。●公众参与:支持气候行动计划与各种有兴趣和受影响的当事方和政府工作人员的参与,向更广泛的非技术受众解释了技术细节,并将参与与分析联系起来。●区域环境专业知识:了解美国,加拿大或法国加拿大气候规划的独特动态(重点是魁北克)。●实施:导航市政结构,开发系统变更模型,确定资金机制和人员配备建议以及制定跨部门政策以实现气候目标。●项目领导力:作为主要客户联系,管理SSG项目团队并与亚顾问合作,并领导报告和计划开发。●适应/脆弱性/韧性:分析技术建模输出,研究气候危害和脆弱性以及审查市政政策和文件。
在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。
注释歧义由于固有的数据不确定性,例如医学扫描中的界限模糊以及不同的观察者专业知识和偏好已成为训练基于深度学习的医学图像模型的主要观点。为了解决这个问题,普遍的做法是从不同专家那里收集多个注释,导致多评价医学图像分割的设置。现有的作品旨在将不同的注释合并到“地面真实”中,而在众多医疗环境中通常无法实现,或者产生不同的结果,或产生与个人专家评估者相对应的个性化结果。在这里,我们提出了一个更雄心勃勃的多评价医学图像细分的目标,即遵守多元化和个性化结果。指定,我们提出了一个名为d-persona的两个阶段框架(第一个d iversification,然后是角色lization)。在第I阶段,我们利用多个给定注释来训练一个可能性的U-NET模型,并具有约束损失,以证明预测多样性。以这种方式,在第I阶段建造了一个共同的空间,其中不同的潜在代码表示多样化的专家意见。然后,在第二阶段,我们设计了多个基于注意力的投影头,以适应来自共享潜在空间的相应专家提示,然后执行个性化的医疗图像细分。我们评估了内部鼻咽癌数据集和公共肺结核数据集(即LIDC-IDRI)的拟议模型。我们的代码将在https://github.com/ycwu1997/d-persona上发布。的实验实验表明,我们的D-Persona可以同时获得多元化和个性化的结果,从而实现了多评位者医疗图像细分的新SOTA性能。
在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
决策算法在社会中的存在感如今正在迅速增加,同时人们也开始担心其透明度以及这些算法可能成为新的歧视来源。事实上,许多相关的自动化系统已被证明会根据敏感信息做出决策或歧视某些社会群体(例如,某些用于人员识别的生物特征识别系统)。为了研究当前基于异构信息源的多模态算法如何受到数据中的敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试平台:FairCVtest。我们使用一组有意识地以性别和种族偏见进行评分的多模态合成档案来训练自动招聘算法。FairCVtest 展示了此类招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息并以不良(不公平)的方式将其与数据偏见结合起来的能力。最后,我们列出了最近开发能够从深度学习架构的决策过程中删除敏感信息的技术的列表。我们使用其中一种算法(SensitiveNets)来实验歧视感知学习,以消除我们多模态 AI 框架中的敏感信息。我们的方法和结果展示了如何生成更公平的基于 AI 的工具,特别是更公平的自动招聘系统。