大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
动态治疗方案(DTRS)提供了一种系统的方法来制定适合个人患者特征的顺序治疗决策,尤其是在感兴趣的生存结果的临床环境中。审查感知树的增强学习(CA-TRL)是一个新的框架,可在估计最佳DTR时解决与审查数据相关的复杂性。我们探索从观察数据中学习有效DTR的方法。通过增强基于树木的增强学习方法,具有增强的反可能性加权(AIPW)和审查感知的修改,CA-TRL提供了强大而可解释的治疗策略。我们使用SANAD癫痫数据集通过广泛的模拟和现实世界应用来展示其有效性,在该数据集中,它的表现优于最近提出的关键指标中提出的ASCL方法,例如受限的平均生存时间(RMST)和决策精度。这项工作代表着跨不同医疗机构的个性化和数据驱动的治疗策略迈出的一步。
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
新兴市场跨国企业(Emnes)如何能够以绿色全球价值链(GVC)与发达市场跨国企业(DMNE)进行创新和竞争?着眼于中国电动汽车(EV)行业的快速增长,我们介绍了GVC包络的新颖概念。这个概念解释了埃姆尼斯如何将战略性地整合到以DMNE为主导的GVC中,与主要供应商和合作伙伴建立合作关系,以创造协同作用并实现规模经济。通过三阶段的过程,艾恩斯不仅为全球绿色过渡做出了贡献,而且还挑战了传统的全球参与者。本文为跨国企业经理和政策制定者提供了关键的见解,强调了全球绿色过渡中竞争和协作的不断发展的动态。
许多现有的运动预测方法都依赖于符号感知输出来生成代理轨迹,例如边界框,路图信息和traf-fight。这种符号表示是现实世界的高级表现,它可能会使运动预测模型容易受到感知错误的影响(例如,在检测开放式录音障碍时失败),而缺少场景中的显着信息(例如,糟糕的道路条件)。另一种范式是从原始传感器中端到端学习。但是,这种方法缺乏解释性,需要大量的培训资源。在这项工作中,我们提出将视觉世界的标记化为一组紧凑的场景元素,然后利用预先训练的图像基础模型和LiDAR神经网络以开放式播音方式进行编码所有场景元素。图像基础模型使我们的场景令牌可以编码开放世界的一般知识,而LiDAR神经网络编码几何信息。我们提出的表示形式可以有效地用几百个令牌编码多帧多模式观察,并且与大多数基于变压器的体系结构兼容。为了评估我们的方法,我们使用了带有凸轮嵌入的Waymo开放运动数据集。通过Waymo开放运动数据集进行的实验表明,我们的方法会导致对最先进的表现的显着改善。
急性髓样白血病(AML)是一种复杂而异质的血液系统恶性肿瘤,其特征在于各种遗传异常。FMS样酪氨酸激酶3突变(FLT3M)被认为是由于高复发率和生存率较低而赋予预后不良的。flt3突变,在近膜膜域中具有内部串联重复(ITD)是最常见的FLT3M。对FLT3抑制剂(FLT3I)(例如Midostorin与标准化疗相关的)的一线常规处理被认为是金标准(1)。 与同种异体干细胞移植(Allo-SCT)合并经常在FLT3M患者中进行,以降低疾病复发的风险(2)。 尽管Allo-SCT的治疗性进步取得了进步,但疾病复发的风险仍然存在,促使探索其他治疗策略。 索拉非尼是第一代II型FLT3I,已被发现有效阻止多个途径。 在各种回顾性和随机相2和3试验中,它已被证明可以有效地减少Allo-SCT后的复发率(3-6)。 在这些研究中,大多数患者在诱导和巩固阶段没有接受FLT3I。 在我们的分析中,我们特别关注在常规治疗阶段接受中肠龙治疗的患者,随后在Allo-SCT后接受了索拉非尼的维持疗法。对FLT3抑制剂(FLT3I)(例如Midostorin与标准化疗相关的)的一线常规处理被认为是金标准(1)。与同种异体干细胞移植(Allo-SCT)合并经常在FLT3M患者中进行,以降低疾病复发的风险(2)。尽管Allo-SCT的治疗性进步取得了进步,但疾病复发的风险仍然存在,促使探索其他治疗策略。索拉非尼是第一代II型FLT3I,已被发现有效阻止多个途径。在各种回顾性和随机相2和3试验中,它已被证明可以有效地减少Allo-SCT后的复发率(3-6)。在这些研究中,大多数患者在诱导和巩固阶段没有接受FLT3I。在我们的分析中,我们特别关注在常规治疗阶段接受中肠龙治疗的患者,随后在Allo-SCT后接受了索拉非尼的维持疗法。
幻觉是对多模态大语言模型(MLLM)的普遍挑战的幻觉,极大地阻碍了他们需要精确判断的真实用法。现有方法可以通过特定设计的数据进行培训,或通过其他来源的特定知识来缓解此问题,从而产生了不可避免的额外费用。在本文中,我们提出了一种新型的MLLM解码方法,该方法基于o-vertust pe nalty和r eTroptoction-llocation策略,它是一种几乎免费的午餐,可以减轻幻觉问题,并没有其他数据,知识,知识或培训。我们的方法始于一个有趣的观察结果,即,大多数幻觉与自我注意力矩阵所表现出的知识聚集作用紧密相关,即MLLM倾向于通过关注一些摘要的代价来产生新的代币,但并非所有以前的代币。这种部分过度信任的倾向会导致忽略图像令牌,并用幻觉描述图像内容。基于观察结果,Opera在梁搜索解码过程中引入了对模型逻辑的惩罚术语,以使Miti-Gate the Trust问题以及回滚策略回顾了在预先生成的令牌中存在摘要令牌的存在,并在必要必要时重新分配给标记。通过广泛的实验,Opera在不同的MLLM和指标上表现出明显的幻觉降低性能,证明其有效性和性质。我们的代码为:https://github.com/shikiw/opera。