1名学生,2名纳赫鲁工程与研究中心MCA助理教授,印度Pambady,印度摘要:多媒体信息至关重要,对检查,感知信息以及由人类大脑进行了说明。一种加密 - 水标记方法保留在某些重要领域(例如医疗,军事和执法部门)中更受欢迎。本文讨论了详细介绍用于提高信息安全性的加密 - 水标记技术和策略的重要性。开发此Crypto-Watermarking应用程序的主要目标是它可以为用户提供数据安全性。此外,这些技术旨在保护多媒体内容旨在限制避免未经授权的数字文档副本。有效负载并最小化位错误率是与这些技术一致的参数。关键字:身份验证,版权保护,多媒体安全性,小波变换
具有20多年的传统,ImageClef基准测试仪为科学界提供了研究活动和评估多模式数据的注释,索引,分类和检索方法。Imageclef 2024与评估论坛(CLEF)[18,19]的会议和实验室集成在一起,第二版由法国格伦诺布尔大学(University of Grenoble Alpes)托管,2024年9月9日至12日,2024年9月20日。考虑到最后四个成功版的经验,Imageclef 2024将处理四个基准测试任务中的多样性,以接近单语言和跨语言信息检索系统的不同方面[14,18,19] [14,18,19] 很少。广告系列目标是多模式数据注释和检索社区以及计算机视觉,图像信息检索和数字图像处理字段的研究人员。从其成立开始,Imageclef却产生了有意义的学术影响,目前,有420个出版物对Web of Science(WOS)有3792篇引用。本文介绍了计划于2024年计划的四个任务,即:ImageClefmedical,ImageCleFrecommeding,参数的图像检索/生成和ImageCleftopicto(图1)。
Bigdan Ionescu 1,Henning M£2,Maria Drold 1,JohannesRèuckert3,Asma Ben Abacha 4,Ahmad Idrisssi-Yagir 3,Schaltic 8,Schaltic 8,System Schmidt 7,Tabea M.G.Pakull 8 , Hendrik 3 , Benjamin Bracke 3 , Christoph M. Friedrich Benjamin 11 , Benjamin 11 , Emmanuelle Esperan 11 11 , Yeuan Fu 12 , Steven A. Hicks 11 , Michael A. Riegler 13 , Andrea Stor, Andrea 13, P˚al Halvorsen 13, Maximilian Heinrich 14,
人工智能和机器学习工具(包括生成模型和深度伪造技术)的广泛使用,使得任何人都可以以最小的努力、低成本和更高的真实感令人信服地创建和/或修改媒体。这种快速发展对传统验证方法构成了重大挑战,传统验证方法可能难以跟上这些技术日益复杂化和规模化的步伐。因此,验证方法的准确性和有效性受到越来越大的压力,使消费者更容易受到错误信息的攻击和影响。人工智能生成的媒体 1 的滥用也对组织构成了重大的网络威胁,包括通过冒充公司高管和使用欺诈性通信来访问组织的网络、通信和敏感信息。其中一些威胁在之前的联合网络安全信息表 (CSI) 中有所描述:将深度伪造对组织的威胁具体化。[3] 除了这些特定的威胁之外,人们对多媒体内容固有的普遍信任正在迅速消失。因此,加强信息完整性的需求从未如此迫切。 [4] 虽然水印等其他技术也可用于媒体出处,但内容凭证(尤其是持久内容凭证)才是本报告的重点2。
关于IIITDM Kancheepuram,研讨会将由印度信息技术设计与制造学院(IIITDM Kancheepuram)的电子与通信工程部组织。这是印度政府人力资源发展部于2007年成立的技术教育和研究卓越中心。追求设计和制造业的工程教育和研究,并促进印度产品在全球市场中的竞争优势。该研究所目前提供UG,PG和Ph.D.计算机工程,电子和通信工程和机械工程计划
使用数字生成性多媒体工具,为各种媒体(例如游戏,电影,装置,表演和安装)生产了交互式和沉浸式的音景。Miranda and Brouse(2017)声称,声音设计师可以利用生成技术来生成过程的声音效果,环境声音纹理以及音频环境,以适应用户输入和环境变化。声音设计师可能会创造动态,响应迅速的音频体验,从而通过利用这些技术来增加用户的沉浸和参与度。数字生成多媒体技术用于为各种媒体(包括游戏,电影,装置,表演等)创建交互式和沉浸式的音景。借助生成工具,声音设计师可以创建适应用户输入和外部情况的过程声音效果,环境声音纹理和音频环境(Miranda&Brouse,2017)。使用这些工具,声音设计师可以产生动态的,响应迅速的音频体验,从而促进用户参与度和沉浸感。
•这些称为多媒体的音频或声音元素。•言语也是教学的理想方法。•音频是模拟和数字类型的。•模拟音频或声音是指原始声音信号。•计算机以数字形式存储声音。因此,多媒体应用程序中使用的声音是数字音频。
对通信资源的评估在整个过程中正在进行中,并内置在各个组件中。,我们在分发事实卡的同时,直接从农业生产者那里收集了反馈,并且根据目标受众的投入和建议,在有关转基因生物,健康和基因工程的部分中进行了内容编辑,并在后续版本的情况下分享了事实卡。用户测试和分析用于完善网站并根据该反馈创建新内容,包括有关标签,民事话语和资源信誉的部分。社交媒体分析确定了通过平台进一步共享哪些内容。最后,开发了一项调查,以测试动画的有效性,并发现栗子树视频在大学生观众中减少了对转基因生物的信任(Rao&Stearns,2023年)。关于动画的发现与中国消费者知识的研究一致(Wen等,2016)。因此,我们的团队将沟通工作集中在其他领域,包括开发课程和课程,而不是继续创建视频和动画。
ISSN 1330-3651(印刷版),ISSN 1848-6339(在线版) https://doi.org/10.17559/TV-20240123001285 原创科学论文 基于多媒体数据分析和人工智能的智能体育教学跟踪系统 徐嘉辉*,齐大陆,刘爽 摘要:近年来,体育环境已经意识到身体和心理特征的重要性。体育工作人员、运动员和教练员已经表明,新的理论和治疗方法可用于增强心理。个人社会生活中的基本需求是城市公共体育。本文在均等化公共服务的基础上,提供了均等化公共体育的城市设施。国家一致的规则可以提供城市公共体育产品和服务,这些产品和服务对公民来说是基本的,考虑到他们的生计和娱乐需求。本文提出利用语义多层次结构方程模型(SMSEM)来评估城市公共体育服务的运动心理需求,目的是紧密围绕群众的体育需求,提高政府城市公共体育服务供给的质量和效率,推动城市体育休闲城市建设,让更多人享受城市公共体育,保障人民群众的基本体育权利。积极心理学的成长具有广泛的理论和应用领域,丰富了新的体育心理学理论和应用。心理监测与体育锻炼的关系最密切的是竞技体育领域。心理指导正朝着系统化、专业化的方向发展。在未来的应用中,从体育心理学中获得的成果更具适用性。关键词:人工智能;多媒体数据分析;语义;运动心理;城市公共体育1引言运动员的运动表现由心理、身体和社会因素来评价[1]。教练员认为,通过提高运动员的心理能力可以提高运动员的运动成绩[2]。心理干预对游泳、足球、垒球、滑冰、高尔夫和网球等多项运动的运动员表现有积极影响 [3]。高水平表现研究比较了不同的运动员,报告了成功运动员的理想心理特征,包括:焦虑的自我调节、高度集中、高度自信、焦虑控制、积极的运动关注和决心以及参与度 [4]。研究表明,运动员具有获得成功的敏锐心理能力 [5]。心理因素的相似性,多维结构和运动员表现的提高与心理技能和心理韧性密切相关[6],即“自然或既定的心理优势”。一般来说,体育运动的多项要求都要求运动员比对手表现得更好。要比对手更加稳定、一致和有控制力[7]。这些运动员除了发展心理韧性外,还采用了心理技能来保持这种心理韧性[8]。运动员可以学习特定技能如何改善心理稳定性的发展和维持[9]。体育心理学家已经启动了与体育运动有关的心理能力的心理测量特性,这些特性已经确定并测量了运动员的心理状态,以方便进一步咨询[10]。此外,问卷还测量了特定领域的因素,例如焦虑和PSIS(运动心理技能清单)团队因素、ACSI-28(运动应对技能量表-28)、APSI(运动心理技能清单)应对技能以及在绩效策略测试中的表现改进[11]。对运动员的心理支持主要包括以下几个方面: