DNA 存储是一项快速发展的技术,它使用四进制编码将数字数据编码为核苷酸序列,其中碱基 A 、C 、G 和 T 代表信息 [2],[3]。这些序列或链通过称为合成的过程产生,并通过测序检索。该方法的一个关键方面是在合成过程中生成每条链的多个副本。在本文中,我们通过引入复合 DNA 字母探索了一种利用这种冗余的新方法 [1],[4]–[8]。复合 DNA 字母由混合不同的核苷酸形成,实验表明它可以提高数据编码性能 [4],[5],[8]。潜在的好处是显而易见的:虽然标准的四字母 DNA 编码每个通道使用 log(4) = 2 位,但复合编码提供了无限的容量,使较短的链能够编码更多的数据。这一点至关重要,因为较短的链可以降低合成成本 [5] 并降低出错的风险,而出错的风险会随着链长度的增加而增加 [9]。编写复合字母并随机读取 n 份副本可以建模为一个嘈杂的通信信道,特别是多项式信道 [1]。该信道的输入是一个长度为 k = 4 的概率向量,表示核苷酸的混合。通道输出遵循多项分布,进行 n 次试验,概率由输入向量决定。通道的最大信息存储率或容量是通过在所有可行的输入分布选择 [10](即 (k − 1) 维概率单纯形上的分布)中最大化输入和输出之间的互信息来获得的。先前的研究 [1] 表明,即使对于较小的 n 值(例如 n = 9),最大化容量的输入分布也需要数十个质点。此外,如缩放定律 [11] 所示,支持大小随容量呈指数增长。这对 DNA 存储系统提出了挑战,因为每个质点对应一种不同的核苷酸混合物,而可能的混合物数量是有限的。为了解决这个问题,我们的论文重点计算了容量实现
计算机科学系弗吉尼亚理工大学,弗吉尼亚州,美国摘要——“除非我们的社会认识到网络欺凌的本质,否则成千上万的沉默受害者将继续遭受痛苦。”~安娜玛丽亚查韦斯。关于网络欺凌的研究已经有很多,但都无法提供可靠的解决方案。在这项研究工作中,我们开发了一个能够以 92% 的准确率检测和拦截欺凌传入和传出消息的模型,从而为这一问题提供了永久的解决方案。我们还开发了一个聊天机器人自动化消息系统来测试我们的模型,从而开发了人工智能驱动的反网络欺凌系统,使用多项式朴素贝叶斯 (MNB) 和优化的线性支持向量机 (SVM) 的机器学习算法。我们的模型能够检测和拦截欺凌的传入和传出欺凌消息并立即采取行动。
图 4 成像簇的生物标志物和临床关联。A、该图显示四个 flortaucipir 簇的早期阿尔茨海默病 31 (SPARE-AD) 识别异常空间模式的中位数和四分位距 (x 轴) 和大脑年龄差距 (y 轴)。B、tau 簇的临床进展从认知无显著 (CU) 到轻度认知障碍 (MCI)/痴呆。C、tau 簇的临床进展从 MCI 到痴呆。D、该图显示三个磁共振成像 (MRI) 簇的 SPARE-AD 的中位数和四分位距 (x 轴) 和大脑年龄差距 (y 轴)。E、萎缩簇的临床进展从 CU 到 MCI/痴呆。F、萎缩簇的临床进展从 MCI 到痴呆。G、flortaucipir 和 MRI 簇组合的患病率。 H、I、评估萎缩与 tau 簇之间关联的多项逻辑回归模型的相对风险比 (RRR)。在 (H) 中,以边缘系统为主簇为参考、白质高信号 (WMH) 体积和 tau 簇为预测因子(在 y 轴上)的多项逻辑回归模型。在 (I) 中,以 tau 簇 I 为参考、载脂蛋白 E ε 4 和 MRI 簇为预测因子(在 y 轴上)的多项逻辑回归模型。红色表示显著关联。灰色表示不显著关联。X 轴为对数刻度。J、flortaucipir 亚簇和 MRI 簇组合的患病率。HSp,海马保留;LP,边缘系统为主
p(a | b;α)给定b的概率,由α参数化。注意:α是模型的参数,而不是随机变量x〜Bernoulli(p)x是带有参数p的Bernoulli随机变量。思考:x表示硬币折腾的结果,p(h)= p x〜多项式(φ)x是一个多项式随机变量,具有参数φ和n = 1-这是Bernoulli随机变量的概括。思考:x表示滚动骰子的结果,p(side-i)= p(i); φ= {p(1),。。。,p(6)} z一个随机变量,以指示滚动k flace die的结果(k = 2:bernoulli;多项式;否则)p(z(j)= i)从高斯i绘制数据点的概率。这更多是一种信念或先验,并且独立于数据。思考:上帝将其设置为先验p(z(j)= i | x(j))X(j)点是从高斯 - i生成的概率,因为我们观察到x(j)。将其视为:我们观察到x(j),现在是从高斯i绘制的吗?p(x(j)| z(j)= i)观察x(j)的概率,因为我们正在从z(j)= i生成数据;在本讲座中,我们假设x(j)| z(j)= i〜n(µ(i),σ(i))θθ一组模型参数;如果k = 2,θ= {µ(1),µ(2),σ(1),σ(2),p}
可以使用逻辑回归过程和多项逻辑回归过程来拟合二元逻辑回归模型。每个过程都有其他过程所没有的选项。一个重要的理论区别是,逻辑回归过程使用个案级别的数据生成所有预测、残差、影响统计和拟合优度检验,而不管数据如何输入以及协变量模式的数量是否小于案例总数,而多项逻辑回归过程在内部汇总案例以形成具有与预测因子相同的协变量模式的子群体,并根据这些子群体生成预测、残差和拟合优度检验。如果所有预测因子都是分类的,或者任何连续预测因子都只采用有限数量的值(因此每个不同的协变量模式都有多个案例),则子群体方法可以生成有效的拟合优度检验和信息残差,而个案级别方法则不能。
摘要:本研究通过使用规定的选择调查表在2023年在四个欧洲国家中收集的大型数据集进行了离散选择实验,从而确定了影响汽车选择决策的主要因素。选择集包括六个当前和流行的汽车动力总成,其因素,用户特征和特定的地理环境有关,这可能会影响带有电动动力总成的车辆的采用。首先提出了一种易于适用的多项式logit模型,以探索所选属性的影响以及该模型具有不同激励策略,地理环境和能源价格的重现用户偏好的能力。引入了混合logit模型和分段的多项式logit模型,以考虑样本的异质性。第一个捕获了与激励措施和运营成本有关的受访者之间的偏好分散体。第二个专门根据汽车市场细分对用户进行了分类,显示出与购买成本和电池范围相关的因素的变化更大。模型估计了九个因素的重量,从而为有针对性的政策建议提供了支持。与成本相关的因素证实了其在选择中的相关性,分析表明,想要将其车辆范围提高1公里的用户愿意支付约80欧元。
1。统计概率和采样分布的主要关键概念,例如标准正常,t,f,二项式,泊松,多项式和卡方。2。将常见的统计方法用于推理,包括估计,置信区间以及单变量或多元假设检验。3。应用和解释各种多变量回归方法,例如线性,逻辑和生存模型。4。开发用于使用统计软件(例如SAS/R)的实用技能,用于公共卫生研究的数据管理,集成,分析和解释。5。与给定的研究问题一起开发了与公共卫生问题有关的统计数据分析的书面和口头介绍,以及通过使用较少的技术术语将这些问题传达给从业人员的能力。
结果:差异表达分析揭示了IAV,MPV和PIV3感染触发的基因表达的显着变化。MAS和RMAS算法能够对生物标志物进行重点识别,从而揭示了所有病毒中干扰素刺激的基因(例如IFIT1,IFIT2,IFIT3,OAS1)的一致激活。我们的GO分析提供了对宿主的防御机制和利用宿主细胞功能的病毒策略的深刻见解。值得注意的是,细胞结构(例如纤毛组装和线粒体核糖体组装)的变化表明细胞优先级的战略转移。使用多项式逻辑回归对呼吸道病毒感染进行分类的92%的平均准确性得到了验证,这表明我们的方法比传统方法的效率优于传统方法。
B节3。概率模型背后的基本思想是什么?说明如何在概率模型中估计参数。4。动态模型是什么意思?说明如何估算以下模型?𝑦= ∝ + 𝛽𝑥 + + + 𝛾𝑦 -𝛾𝑦 -1 +𝑢𝑢| | 𝛾 | <1和𝑢= 𝜌 𝜌𝑡𝑡𝑡𝜀 𝜀 𝜀。在上述模型中是平均零和方差𝜎2和| 𝜌 |的通常随机误差项。 <1。5。解释多项式logit模型背后的核心思想。该模型的基本假设旅馆什么?6。面板数据模型的优点是什么?指定固定效应模型并解释如何估算。7。在以下内容上写简短注释:a)拱形模型
摘要。本文探讨了消费者对农业食品领域新育种技术 (NBT) 的接受程度。我们的主要研究问题是信息在塑造消费者对转基因食品和农业生产新育种技术的态度方面所起的作用。为此,我们使用多项 Logit 模型来分析在提供科学信息后,人们对食品安全问题和现代生物技术相关的环境风险的先前看法的变化或确认。我们的研究结果证实了贝叶斯假设,根据该假设,在食品安全方面,人们将先前的信念与新信息结合起来,以融合科学信息。我们还发现,当涉及环境风险时,确认偏差的可能性更高,人们不太愿意改变先前的信念。