石墨烯及其衍生物表现出有趣的特性(机械性能,电导和热导电性)。将其纳入聚合物矩阵时,在Elec Tronics,Medicine,Transportation等领域中可能进行了许多应用。本综述的目的是突出石墨烯如何影响聚合物纳米复合材料的电性能。第一部分解释了石墨烯的特殊结构,石墨烯是合成石墨烯的主要方法以及对电导率的影响。在第一部分中,还解释了石墨烯血小板的方向和比对如何影响单相聚合物纳米复合材料的渗透阈值或电导率。最后,在第一部分中,我们通过对石墨烯上的化学处理来提高对电性能增强的一些概括。本综述的第二部分的目的是显示将石墨烯掺入不混溶的聚合物对微结构和电气性能的影响。,我们专注于选择性定位纳米颗粒的概念:如何预测石墨烯的定位以及如何通过化学和动力学因素来量身定制定位。根据73个出版物的数据绘制了几个图,以表现出基于石墨烯的聚合物混合纳米复合材料的不同参数对电导率(S.cm -1)的影响。最后,本综述的最后一部分专门用于基于石墨烯的聚合物混合纳米复合材料的电气应用。
图3。使用微流体设置进行AGNPS合成:a)微流体设备; b)帕累托图显示了因素及其相互作用的统计学意义,红线显示了统计显着性的限制值; c)响应表面表明pH和柠檬酸三座(TC)对AGNPS大小的综合作用,TC值在mm中给出,并且颜色棒适用于nm中的粒径; d)比较了对初始数据集训练的模型的性能与使用随机选择的其他实验的模型的比较,并根据决策树进行指导DOE; e)将PBM-CFD仿真结果与来自微流体通道和混合良好反应器的实验数据进行比较。所显示的数字已改编自(Nathanael,Galvanin等,2023)(a - c),(Nathanael,Cheng等,2023)(D)和Pico等。(2023)。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
Rachel D. Wells,PhD,RN,Kate Guastaferro,PhD,MPH,Andres Azuero,PhD,Christine Rini,PhD,Bailey A. Hendricks,Bsn,BSN,RN,RN,Chinara Dosse,Chinara Dosse,Chinara Dosse,MPH,MPH,MPH,MPH,Richard Taylor,Richard Taylor,dnp,dnp,dnp,dnp,crnp,apn-bc,apn-bc,Charis R.Williams,MSADLE,MSTALE,M.M.M.M. M. M. M. M. M. M. grimph,M.M.M.丽贝卡·苏多尔(Rebecca Sudore)),阿拉巴马大学阿拉巴马州伯明翰的阿拉巴马大学;方法论中心(K.G.),宾夕法尼亚州立大学,宾夕法尼亚州大学公园;西北大学Feinberg医学院和Robert H. Lurie综合癌症中心(C.R.),伊利诺伊州芝加哥西北大学;医学院(G.R.W.),阿拉巴马州伯明翰伯明翰市血液学 - 肿瘤学系;医学院(R.S.),加利福尼亚大学旧金山大学旧金山的老年医学师;血液肿瘤科(A.R.R.),华盛顿州华盛顿大学医学院儿科学系;姑息治疗和弹性实验室(A.R.R.),西雅图儿童研究所,华盛顿州西雅图;和姑息和支持护理中心(M.A.B.,J.N.D.),阿拉巴马大学,美国阿拉巴马州伯明翰,美国阿拉巴马州
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
摘要 我们提出了一个计算流体动力学 (CFD) 框架,用于对 3D 打印中的激光金属沉积 (LMD) 过程进行数值模拟。该框架综合了数值公式和求解器,旨在提供足够详尽的过程场景,其中载体气体被建模为欧拉不可压缩流体,在 3D 打印室内传输金属粉末,这些粉末被跟踪为拉格朗日离散粒子。基于来自激光束和加热基板的热源,开发了粒子模型,使其也通过热传递与载体气体相互作用,并根据粒子液体质量分数的增长规律在熔化相中演变。采用增强型数值求解器,其特点是改进的牛顿-拉夫森方案和用于跟踪粒子的并行算法,以获得数值策略的效率和准确性。从研究整个 LMD 过程的优化设计的角度出发,我们提出了一种敏感性分析,专门用于评估流入速率、激光束强度和喷嘴通道几何形状的影响。此类数值计算是使用 deal.II 开源有限元库开发的内部 C++ 代码执行的,并可在线公开获取。
添加过渡元素(如 Cu、Fe 和 Ni)的铸造近共晶 Al-Si 合金是航空航天和汽车工业中常用的材料。[1,2] 此类合金的微观结构特点是共晶和初生 Si 以及嵌入 Al 基体中的多种富 Ni、Fe 和 Cu 铝化物形成的 3D 互连网络。[3 – 7] 在高温下(最高达约 300 – 350 ℃)长时间使用后,铝基体会过时,从而降低其强度和蠕变性能。为了提高这些 Al-Si 合金的强度和抗蠕变性能,可以使用额外的陶瓷增强材料,如短纤维和颗粒。[8 – 10] 研究表明,此类复合材料的微观机械行为在很大程度上取决于纤维的取向、颗粒的空间分布、
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
该研究主题涉及调查气候驱动的变化和反馈机制,与地下水文地质流动和运输,多年冻土变化以及对寒冷地区大气和水系统的相互作用相互作用,并针对沿着气候梯度的北部北极和亚北极北部地区的特定应用。具体目标包括调查和量化多年冻土的过程和系统链接 - 水文 - 杂质地质学 - 水上碳转运 - 气态碳释放,通过开发用于组装这种过程和系统建模能力的方法。有关相关变更机制的可用观察结果用于模型测试和模型解释来自正在进行的现场调查的几个北极和亚北极部位的数据,包括但不限于位于瑞典北部,格陵兰岛和斯瓦尔巴群岛的地点。
3.1简介85 3.2多相流术语86 3.2.1表面速度86 3.2.2混合速度87 3.2.3保持速度87 3.2.4相速度87 3.2.5滑动87 3.2.6混合量88 3.2.2.2两相流程91 3.3.2三相流程97 3.3.3气体/冷凝水流程度98 3.4确定多相流设计参数99 3.4.1稳态两相流量100 3.4.2稳态三相流动流量106 3.4.4多相管道的尺寸速度标准116 3.7多相管道操作117 3.7.1泄漏检测117 3.7.2管道降压118 3.7.3 Piging 119 3.8多相流动保证121 3.8.8.8.8.8气体氢