英国原子能管理局成立于1954年,当时英国政府成立了一个新机构来监督美国的核研究计划。角色是为英国的原子武器提供威慑,并为未来的核电站开发反应堆技术。
摘要超导涡旋的动力学是由非线性部分微分方程描述的复杂现象。现代方法已启用了有趣的几何形状中模拟涡流动力学。本文包括用于分析超导涡流(例如通量量化和固定)不同现象的基本方法论的描述。该项目的目标是模拟3D中的涡流动力学,以估计不同超导零件中涡旋强度的耦合强度。这些耦合力可能会影响超导MEMS共振器的行为。本文中给出的估计值表明,两个板之间的涡流耦合力将足够重要,足以可测量。为了将本文中的方法与测量的材料参数相结合。
1 Richards,K.,Senecal,P。K.,&Pomraning,E。(2023)。 收敛3.1手册。 融合科学公司,威斯康星州麦迪逊。 2 Keniar,K。和Garimella,S。“圆形和平方微型和迷你通道中制冷剂冷凝的实验研究”。 国际热与传播杂志176(2021):121383。 3 Yue,Z.,Battistoni,M。和Som,S。(2020)。 使用高保真模拟的发动机燃烧网络喷射器喷射G喷射器具有详细的喷油器几何形状。 国际发动机研究杂志,21(1),226-238。 4 Magnotti,G。M.,Sforzo,B。 A.和Powell,C。F.(2022年,6月)。 通过在横流中撞击液体射流对壁膜形成的计算研究。 在涡轮博览会中:土地,海洋和空气的动力(第1卷 85994,p。 V03AT04A030)。 美国机械工程师学会。1 Richards,K.,Senecal,P。K.,&Pomraning,E。(2023)。收敛3.1手册。融合科学公司,威斯康星州麦迪逊。2 Keniar,K。和Garimella,S。“圆形和平方微型和迷你通道中制冷剂冷凝的实验研究”。国际热与传播杂志176(2021):121383。3 Yue,Z.,Battistoni,M。和Som,S。(2020)。使用高保真模拟的发动机燃烧网络喷射器喷射G喷射器具有详细的喷油器几何形状。国际发动机研究杂志,21(1),226-238。4 Magnotti,G。M.,Sforzo,B。A.和Powell,C。F.(2022年,6月)。通过在横流中撞击液体射流对壁膜形成的计算研究。在涡轮博览会中:土地,海洋和空气的动力(第1卷85994,p。 V03AT04A030)。美国机械工程师学会。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在工业标记领域,连续喷墨技术以墨滴的高速发射为基础。发射出的墨滴形状是墨水特性和刺激操作点的结合,对打印质量有直接影响。本文通过使用 COMSOL Multiphysics ® 模拟多种粘度的液滴形状(正问题)并使用机器学习技术从液滴形状推断粘度(逆问题)来探索粘度的作用。此用例说明了如何设置机器学习逆问题解决策略的主要阶段:收集数据、选择和训练模型、测试模型并提高其预测能力。COMSOL Multiphysics ® 的灵活性使其易于与 Python 机器学习工具交互,从而高效地产生有价值的结果。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
他于 2021 年获得伦斯勒理工学院核工程博士学位,期间致力于开发熔盐反应堆 (MSR) 系统中不溶性裂变产物传输的质量传递建模方法。他的研究生工作由能源部核能大学计划 (DOE NEUP) 奖学金资助,他于 2017 年获得该奖学金。
摘要在本文中,我们介绍了使用多物理学方法对定向能量沉积(DED)添加剂制造(AM)模拟的研究。我们在流体,固体力学和层流物理学中使用传热的组合来准确模拟DED过程。模拟提供了有关熔体池温度的详细信息,同时为沉积的每一层材料使用各种过程参数。的结果证明了多物理学方法在DED AM期间对各种物理现象之间复杂相互作用的洞察力的重要性。研究结果对DED AM过程的优化具有重要意义。关键字:添加剂制造,直接能量沉积,数学建模,模拟,comsol,温度
摘要 随着晶体管越来越小、越来越密集,电子的物理流动可能会因电迁移 (EM) 在互连处形成空隙和裂缝,从而随着时间的推移抑制器件的性能。不符合 EM 规范的电路设计可能会导致灾难性故障和 SI/PI 性能下降。缓解 EM 的一种方法是在铜线层之间使用多个通孔来减少电流拥挤效应。然而,通孔的数量可能会影响关键接头内的电流密度和电流再分布。当前的研究主要集中在基于经验 Black 方程预测 EM 故障时间 (TTF)。然而,这种方法可能无法提供足够的关于空隙形成和裂纹扩展的见解,并反映可能影响 TTF 的电流再分布。在本研究中,我们比较了具有不同结构设计的球栅阵列 (BGA) 测试载体的 EM 寿命,并开发了一种基于多物理场迁移考虑焊点中原子扩散的方法,以研究通孔对电流再分布的影响。此外,还模拟了裂纹扩展以了解失效机制。在 150C 下对无通孔和有 8 个通孔的 BGA 走线施加 5A、7A 和 9A 电流以比较电磁性能。此外,每个测试结构都采用两种不同的表面处理:A 和 B。根据实验结果,执行基于原子通量发散 (AFD) 的有限元分析 (FEA) 模拟以与实验结果进行比较。发现与菊花链走线相比,8 个通孔可以显著降低电流拥挤效应。研究表明,8 个和 4 个通孔的电磁阻力优于无通孔走线,并有助于预测不同结构的电磁寿命,为设计优化提供指导。 关键词 电迁移、可靠性、多物理场、有限元分析、电路优化
美国能源部科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831-0062 www.osti.gov 电话:(865) 576-8401 传真:(865) 576-5728 免责声明 本报告由美国政府机构资助工作编制。美国政府及其任何机构、芝加哥大学阿贡分校有限责任公司及其任何员工或官员均不对所披露信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私人权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡有限责任公司的观点和意见。