摘要 — 考虑到遥控机器人 (ROV) 在进行检查、数据收集和海底探索方面的重要性,本文提出了一种太阳能 ROV 解决方案。太阳能用于为 ROV/AUV 供电,经过适当设计的太阳能电池板可为 Blue ROV 提供 5 小时的性能。正在考虑使用小型 10Hp/12kg ROV 进行水下活动,其能量需求负载为 943.68W。为了满足这一需求,太阳能电池板安装在浮动平台上以产生必要的电力,并通过细致的计算确定太阳能模块的最佳数量和尺寸。为了确保连续运行,逆变器、充电控制器和电池组的尺寸也应相应调整。所提出的模型使用 COMSOL Multiphysics 环境优化了硅太阳能电池。COMSOL Multiphysics 中的模拟根据设计参数验证了结果,确认结果符合计算值。使用太阳能系统可提高运营效率,同时确保海上活动的长期可持续性。太阳能 ROV 代表着利用可再生能源在几内亚湾和其他地区进行环保、高效的水下勘探迈出了重要一步。
BioMEMS 组,IEMN(UMR 8520 - 法国里尔北部大学)*BP 60069,Avenue Poincaré,59652 Villeneuve d'Ascq cedex,法国 – vincent.senez@isen.fr 摘要:本文介绍了一种使用无源阀门的模拟数字微流体转换器 (ADMC),能够将连续液体流转换为液滴,以实现介电电润湿 (EWOD) 驱动。使用 COMSOL Multiphysics 的微流体应用模式优化了阀门校准、几何特性和损耗减少。关键词:EWOD、片上实验室、微流体。1. 简介微流体装置可以处理微量液体,无论是微通道中的连续流还是疏水表面上的液滴。到目前为止,大多数片上实验室 (LOC) 只采用这两种技术中的一种实现。然而,通过与微电子系统类比,人们很容易理解,根据操作的不同,这两种技术都有各自的优点和缺点。因此,必须研究能够将连续流转换为液滴,反过来,能够将液滴转换为连续流的系统。借助使用 COMSOL Multiphysics 的数值模拟,我们设计了一个模拟(连续流)到数字(液滴位移)微流体转换器 (ADMC)。本文的第二部分介绍了数值模型及其校准,第三部分专门介绍 ADMC 的设计和模拟分析。
摘要。本研究致力于研究太阳辐射和高环境空气温度对数字电压互感器工作的影响。开发的数字电压互感器设计包含在技术和商业电能消耗计量的智能电网系统中。对俄罗斯夏季条件下数字电压互感器工作的不利条件进行了分析。介绍了借助基于有限元法的 COMSOL Multiphysics 程序获得的变压器热状态数学模拟结果。在经过验证的数学模型上对电阻分压器变压器的热场进行了实验研究,以确定电阻元件自热最小的位置。
我们介绍了一个多物理学和几何多尺度计算模型,适合描述由四腔机电模型驱动的整个人心脏的血液动力学。我们首先介绍了一项关于生物物理详细的RDQ20主动收缩模型(Regazzoni等,2020)的校准的研究,该模型能够重现血液动力学生物标志物的生理范围。然后,我们证明了力产生模型再现某些显微镜机制的能力,例如力对纤维缩短速度的依赖,对于捕获总体生理机械和流体动力学宏观行为至关重要。这激发了使用具有较高生物物理有效性的多尺度模型的需求,即使感兴趣的输出相对于宏观尺度。我们表明,使用高实现机电模型,结合了详细的校准过程,使我们能够以机械和血液动力学数量来实现显着的生物物理效果。的确,我们的机电驱动的CFD模拟 - 在整个心脏的解剖学精确几何形状上进行 - 提供了与心脏生理学相匹配的结果(以流量模式)和定量(在与生物标志物在生物标记中的比较时)。此外,我们考虑了左束分支块的病理病例,我们研究了由于我们的多物理综合模型,因此电气异常对心脏血流动力学的后果。我们提出的计算模型可以忠实地预测病理性条件下左心室的延迟和增加的壁剪应力。在集成框架中不同的物理过程的相互作用使我们能够通过捕获和再现人类心脏的内在多物理性质来忠实地描述和建模这种病理。
在 Wolfspeed,COMSOL Multiphysics ® 软件模拟在设计阶段被证明对节省时间和金钱特别有帮助。他的新设计基于两种宽带隙半导体,氮化镓 (GaN) 和碳化硅 (SiC),它们在高频和高温下稳定运行。模拟对于找到几何和材料特性的最佳组合以优化新电源模块的重量、开关频率和功率密度至关重要(图 2)。“Wolfspeed 专注于高功率密度产品,这些产品需要进行大量精确测试才能完善。在投入金钱和时间进行原型设计和构建之前,能够进行模拟是非常有价值的,”他评论道。
摘要:要开发用于自适应光学 (AO) 系统的高性能控制器,首先必须推导出足够精确的可变形镜 (DM) 状态空间模型。然而,开发考虑系统阻尼、执行器动力学、边界条件和影响系统动力学的多物理现象的逼真的大规模有限元 (FE) 状态空间模型通常具有挑战性。此外,建立一个能够自动快速推导出不同执行器配置和系统几何形状的状态空间模型的建模框架也具有挑战性。另一方面,为了实现精确的基于模型的控制和系统监控,通常需要从实验数据中估计状态空间模型。然而,这是一个具有挑战性的问题,因为 DM 动力学本质上是无限维的,并且具有大量的特征模态和特征频率。在本文中,我们提供了解决这些挑战的建模和估计框架。我们开发了一个面板 DM 的 FE 状态空间模型,该模型结合了阻尼和执行器动力学。我们研究了不同模型参数的频域和时域响应。使用 COMSOL Multiphysics 软件包中包含的 LiveLink for MATLAB 工具箱,状态空间建模过程完全自动化。开发的状态空间模型用于生成估计数据。该数据与子空间识别算法一起用于估计降阶 DM 模型。我们解决了模型阶数选择和模型验证问题。本文的结果为广大 AO 和机电一体化科学界提供了必要的建模和估计工具。开发的 Python、MATLAB 和 COMSOL Multiphysics 代码可在线获取。
comsol,comsol徽标,comsol多物理,comsol桌面,comsol编译器,comsol Server和livelink是Comsol AB的注册商标或商标。所有其他商标都是其各自所有者的财产,Comsol AB及其子公司和产品不隶属于,由这些商标所有者归属,认可,赞助或支持。有关此类商标所有者的列表,请参见www.comsol.com/trademarks。
工业系统自动化、视觉与控制 (AVCSI) 实验室 阿尔及利亚奥兰科技大学自动化工程系。 ORCID:https://orcid.org/0000-0002-3781-9779 doi:10.15199/48.2023.03.43 使用 3D-TLM 方法和 COMSOL Multiphysics 软件对基于 MEMS 的气体传感器进行微加热器热分析 摘要。带有金属氧化物 (MOx) 的气体传感器为 MEMS 传感器提供了新的机会,因为它们拥塞少、灵敏度高、响应速度快。微热板是这些传感器中控制传感层温度的关键组件。在这项工作中,已经制造并设计了一种蜿蜒的铂基加热器。传输线矩阵 3D-TLM 方法和 COMSOL 软件用于预测均匀的温度分布。因此,在设计任何气体传感器和 MEMS 之前,微加热器热区的温度控制非常重要。压力。使用金属 (MOx) 技术可以将 MEMS 技术与其他技术结合起来。 Płyta grzejna jest kluczowym elementem tych czujników do kontrolowaniaTemperature Warstwy czujnikowej。 W tej pracy wykonano i zaprojektowano Meandrowy grzejnik na bazie platyny。 Metoda 3D-TLM 是一种通过 COMSOL 程序传输的 Macierz 语言,可用于测量温度。控制温度和微机电温度是 MEMS 项目中的一个重要问题。 ( 分析方法 3D-TLM i oprogramowaniem COMSOL Multiphysics dla czujnika gazu MEMS ) 关键词:基于 MEMS 的气体传感器、微型加热器、3D-TLM、COMSOL Multiphysics、均匀温度分布。主题:基于 MEMS 的气体传感器、微控制器、3D-TLM、COMSOL Multiphysics、温度传感器。简介基于 MEMS 的气体传感器(微机电系统)具有相当有趣的特点,例如高灵敏度、低成本和越来越小的尺寸。MOX 传感器是家庭、商业应用和工业安全设备中最主要的固态气体检测设备。然而,这种传感器的性能受到其加热板的显著影响,加热板控制传感层的温度,传感层应在加热器区域所需的温度范围内,以便检测不同的气体。这些传感器是由 Taguchi [1] 首次开发的。它们的工作原理基于金属氧化物层的电导率随周围气体性质的变化而变化。然后,这些传感器的结构可以小型化,因为它们的制造与微电子工艺兼容。这样可以降低成本,并可以将这些传感器和相关电子电路集成到单个组件中。许多研究都集中在微传感器的设计和建模上,例如 M. Dumitrescu 等人 [2] 和 S.Semancik 等人 [3] 的研究,他们在兼容的 SiO 2 平台上引入了多晶硅微加热板平台并集成了片上电路。M. Afridi 等人 [4] 设计了一种带有多晶硅微加热器的单片 MEMS 气体传感器。之后,J. Cerda Belmonte 等人 [5] 描述了检测 O 2 和 CO 气体的制造工艺。2007 年,Ching-Liang Dai 等人 [6] 设计了一种基于 WO3 纳米线的片上湿度传感器,JF Creemer 等人 [7] 提出了一种 TiN 微加热板。而 G.Velmathi 等人 [8] 提出了一种基于 TiN 微加热板的传感器。 [8] 提出了各种微加热器几何形状,M. Gayake、Jianhai Sun [9, 10] 通过有限元法模拟比较了这些基于聚酰亚胺的微加热器几何形状。2017 年,T. Moseley [11] 介绍了半导体金属氧化物气体传感器技术的发展进展,刘奇等人 [12] 综述了基于单层 SiO2 悬浮膜的新型形状微加热板的热性能可能性。R. Jagdeep 等人 [13] 提到
EuroSimE 是享誉全球的国际 IEEE 会议,与会者包括来自行业和学术界的顶尖专家,他们致力于微/纳米电子和微/纳米系统的热、机械和多物理场模拟和实验。EuroSimE 是一个协作和交流平台,专门举办有关资助项目和未来微电子产品路线图(例如异构集成路线图)的会议。