分析提供应力和变形,模态分析确定振动特性,直至涉及动态效应和复杂情况的高级瞬态非线性现象,ANSYS 还提供了一套全面的计算流体动力学软件,用于模拟流体流动和其他相关物理现象。它提供无与伦比的流体流动分析功能,提供设计和优化新流体设备以及排除现有装置故障所需的所有工具。流体力、热效应、结构完整性都会影响产品和工业过程的性能。ANSYS 多物理解决方案可以帮助我们结合和单独检查这些影响,从而实现最高保真度的解决方案。
此任命将授予早期职业核科学家或工程师,以开发和执行应用研究和开发,以影响先进的反应堆设计和开发,支持操作,安全性,安全性,燃料管理,实验管理或其他与INL研究反应器设施相关的相关工程活动(例如,用于支持高级反应器开发的高级测试反应器)。杰出的申请人将对计算和实验反应堆物理学,核心设计优化,核仪器和热流体科学有深入的了解,并具有既定且良好的反应器分析工具的经验,例如(但不限于Relap,McNP,Helios,Shelios,scale and Scale and Scale and Scer and Serpent and Scer和Serpent),以及基于Mosose的紧密构造型Multiphys Inalless Inalssists工具。
几年前电子设备的功率要求很高。但是,随着基于Internet的系统的技术发展,低功率的微电子设备的设计,WSN和IoT设备的设计变得必要。在这些系统中,大小和功率要求很低,在大多数情况下,电池的替代是具有挑战性的。对于这些微电子和物联网设备,丰富的能量收割机非常有用。在不同的丰富能源资源中,用压电悬臂束能量收割机收集振动能量。这项研究工作介绍了能量收割机(EH)的设计和分析,该功能收割机(EH)中包含一个单个压电悬臂梁,该悬挂式横梁捕获了悬架桥的振动能量。这种方法通过将压电能量收获构建为解决低功率设备面临的力量挑战的解决方案,将两件事联系在一起,从而使过渡变得更加自然和连接。设计中的主要挑战是将桥梁的共振频率与压电EH相匹配,该压电EH约为2.5Hz,以提取最大功率。为了克服Comsol多物理学中的特征频率分析。单光束压电EH的3D几何形状是在Comsol多物理固体作品中设计和分析的。在这项研究工作中,基于COMSOL多物理学中的第一个六种特征频率分析,单光束压电频率的几何参数与特征频率之间建立了关系。选择(0.98 m/s²)的力是因为它避免了与关键系统组件共鸣。对于有限元分析(FEA),通过在悬架桥中施加等于振动力(0.98m/ s2)的力来振动压电单光束收割机。收割机的输出的共振频率为2.5Hz。压电的输出为2.5Hz的800毫米伏特非常低。还将压电EH的输出结果与具有单分支结构的悬臂梁进行了比较。
了解电热 SiC 功率 Mosfet 在短路等极端异常操作中的行为是认证的主要需求,尤其是对于关键或长寿命应用。但模拟电子元件中的短路非常困难,因为我们需要一个完全电热的多物理模型。我们还需要模拟顶部铝电极的熔化。我们使用“表观热容量”方法来模拟这种熔化,该方法考虑了潜热和熔化过程中所需的吸收能量。因此,本文首次提出了一个数值有限元模型,该模型在 2D 中完全模拟了 SiC 功率晶体管在短路状态下的动态电热行为。与现有的 1D 模型相比,该模型的几何精度提供了显着的附加值。
• 计算科学,例如 1) 复杂多物理场正向问题的稳健/可扩展和准确的计算公式和解决方法,包括多材料/多流体算法;2) 严格的多物理场耦合方法,和/或跨工程领域的多种物理场集成,可能涉及分层、异构和/或多保真模型;• 计算系统,例如新兴计算范式的理论基础;云端 CaaS 工作流的专业化和交付以及先进的云方法以实现高保真模拟;自主计算系统和工作流管理;量子算法、量子控制和电路设计以及量子架构的理论进展;用于编程和分析神经形态算法和系统的稳健理论框架的发展。• 信息科学,例如解释、可视化、解释和传达分析结果的方法;来自不同来源的数据融合;开发新数据源;在源头处理和缩小传感器数据;异常检测;生成合成数据的方法;以任务为中心的数据分析,包括无监督学习和流分析;管理动态数据;形式化方法;以及评估和监控人机协作的算法和指标。• 可信人工智能,例如用于认证人工智能软件的方法,该方法与 NIST 和 DOE AITO 办公室正在开发的新生定义一致。• 用于任务应用的可信生成人工智能,例如 1) 评估 GenAI 的适用性、可靠性、能力限制和安全性;2) 评估开发成本与对用户任务/任务问题决策的影响;3) 相对于任务领域/任务或专用硬件的训练和推理效率的算法专业化。• 人类信任,例如信任的认知方面、增强信任的过程、计算环境中的信任动态以及具有突发行为的系统。还邀请对人类可理解的计算结果进行研究,考虑系统目标和人类信任相互作用中的不确定性、可信度、透明度、可解释性和出处追踪影响。• 国家安全信息科学与技术 (NSIST)
本研究探讨了MATLAB,COMSOL和PYTHON在精确工程中数学建模和模拟中的应用。这些工具在处理各种工程挑战(从控制系统到多物理模拟和自定义算法开发)方面的优势进行了分析。该研究还研究了人工智能(AI)的作用,在通过自动编码,提供概念解释和协助模型结构来支持数学建模任务中的作用。通过比较计算性能,准确性和可用性,该研究旨在确定适合不同模拟类型的最佳软件,例如热流体动力学和结构分析。调查结果强调了选择合适的软件来优化计算资源,验证模型并实现可靠,有效的仿真的重要性。本研究为弥合理论模型和实际应用之间的差距,提高生产率并促进精确工程的创新而贡献了实用指南。
如前所述,我的工作集中在建模上,我开始编写一些代码,以在水力机械(HM)条件下为破裂的岩石开发多物理模型,从而模拟流体 - 固定耦合过程。热效应也是地热能提取需要考虑的关键点之一。但是,地热储层(热传导和热对流)的热效应非常复杂。热传导控制通过岩石基质的热传输,热对流控制着裂缝流体流过嵌入岩石基质中的通道的热传输。在当前程序中很难实现这两个过程,尤其是后一个过程。提出的用于模拟GFZ传热的孔隙尺度模型是可靠的,并且可能与颗粒系统中的THM耦合有关,从而使新的视线考虑了热效应。