的图从Polonsky等人改编。糖尿病。2022 13:175–1871。1。Nauck等。 mol代谢。 2021 46:101102。 2。 坎贝尔和德鲁克。 细胞代谢。 2013 17:819-837。 3。 Polonsky等。 糖尿病。 2022 13:175–1871。 4。 Weiss等。 患者更喜欢依从性。 2020 14:2337-2345。 5。 Polonsky等。 糖尿病谱。 2021 34:175-183。 6。 Terhune。 路透社。 2023 7月11日。 GLP-1RA =胰高血糖素样肽1受体激动剂Nauck等。mol代谢。2021 46:101102。2。坎贝尔和德鲁克。细胞代谢。2013 17:819-837。 3。 Polonsky等。 糖尿病。 2022 13:175–1871。 4。 Weiss等。 患者更喜欢依从性。 2020 14:2337-2345。 5。 Polonsky等。 糖尿病谱。 2021 34:175-183。 6。 Terhune。 路透社。 2023 7月11日。 GLP-1RA =胰高血糖素样肽1受体激动剂2013 17:819-837。3。Polonsky等。糖尿病。2022 13:175–1871。4。Weiss等。患者更喜欢依从性。2020 14:2337-2345。5。Polonsky等。糖尿病谱。2021 34:175-183。6。Terhune。路透社。2023 7月11日。GLP-1RA =胰高血糖素样肽1受体激动剂
摘要虽然中和靶向HIV-1融合肽的抗体已通过疫苗接种引起小鼠,但迄今为止报道的抗体仅来自一种可以中和的单个抗体类。 HIV-1菌株的30%。为探索鼠免疫系统产生交叉脱和中和抗体的能力并研究如何实现更高的宽度和效能,我们测试了17种利用多种融合肽载体结合物和HIV-1包膜的较高的促进疗法,并具有差异性融合型融合融合式肽。我们观察到在融合肽 - 载体结合的小鼠中启动可变的肽长度,以引起更高的中和反应,结果我们在豚鼠中构成了。从接种疫苗的小鼠中,我们分离了21种抗体,属于4种不同类别的融合肽指导的抗体,能够交叉中和。来自每个类别的顶级抗体集体中和208杆组合面板的50%以上。结构分析(X射线和冷冻EM)都揭示了每个抗体类别,以识别融合肽的独特构象,并具有能够促进多种融合肽的结合口袋。鼠疫苗接种可以引起多种中性抗体,并且在素数期间改变肽长度可以改善针对HIV-1脆弱性融合肽位点的跨层反应的启发。
平均值±SEM显示; n =每组2-11。b)从2.8毫米基线的16.7 mm葡萄糖刺激,c)从0 mm基线刺激11毫米的葡萄糖刺激。Rajagopalan等。 ADA 2023口头表现。 抽象号。 181-or。 ex9 = exendin-9,GFP =绿色荧光蛋白,GLP-1 =胰高血糖素样肽1,GLP-1R = GLP-1受体,GLP- 1RA = GLP-1R激动剂,GLU =葡萄糖,GSIS,GSIS,GSIS,GSIS =葡萄糖刺激的胰岛素抑制剂胰岛素分泌,PGTX = PCANCREATIC GENEC GENEC TERPAIPE THERIC THERIC THERIC THERIC TREAPY THERIC THERIC THERIC TERAPTIC THERIC TERAPY THERIPRajagopalan等。ADA 2023口头表现。抽象号。181-or。ex9 = exendin-9,GFP =绿色荧光蛋白,GLP-1 =胰高血糖素样肽1,GLP-1R = GLP-1受体,GLP- 1RA = GLP-1R激动剂,GLU =葡萄糖,GSIS,GSIS,GSIS,GSIS =葡萄糖刺激的胰岛素抑制剂胰岛素分泌,PGTX = PCANCREATIC GENEC GENEC TERPAIPE THERIC THERIC THERIC THERIC TREAPY THERIC THERIC THERIC TERAPTIC THERIC TERAPY THERIP
抽象背景磷脂酰肌醇3-激酶(PI3K)经常在癌症中过度激活,并且在恶性细胞和免疫细胞中都起着重要作用。PI3Kα抑制剂对肿瘤微环境(TME)的影响仍然很大未知。在这里,我们研究了临床PI3Kα特异性抑制剂CYH33对TME的调节。检测到在免疫能力的背景下或无胸腺小鼠中Cyh33对鼠肿瘤的活性。单细胞RNA测序和多参数流式细胞仪,以确定TME的免疫分析。用原代鼠细胞进行了CYH33对免疫细胞的影响。结果CYH33在免疫能力的情况下表现出更有效的抗肿瘤活性。CYH33增强了CD8 + T和CD4 + T细胞的浸润和激活,同时衰减M2样巨噬细胞和调节性CD4 + T细胞。通过在CYH33治疗中诱导长期免疫记忆的诱导来证实记忆T细胞的增加。从机械上讲,CYH33通过巨噬细胞对M1表型的优先极化来缓解CD8 + T细胞抑制的膨胀。CYH33促进了TME中的脂肪酸(FA)代谢,而FA则增强了CD8 + T细胞在体外的活性。CYH33与FA合酶(FASN)抑制剂C75的组合协同抑制了肿瘤的生长,并增强了宿主免疫。结论CYH33诱导免疫激活并与FASN抑制剂协同,以进一步促进抗肿瘤免疫,从而获得了对PI3K抑制剂如何通过调节TME的活性并为PI3K和FASN在乳腺癌治疗中的并发靶向的理由。
唐氏综合症 (DS) 是智力障碍最常见的疾病,是由智人 21 号染色体 (HSA21) 的三体性引起的。HSA21 基因剂量的增加与早期神经发育变化有关,随后在成年期出现类似阿尔茨海默氏症的认知衰退。然而,促进衰老过程中大脑病理的分子机制仍然缺失。新型 Ts66Yah 模型代表了 Ts65Dn 的进化,用于表征大脑退化的进展,其表型更接近人类 DS 病症。在这项研究中,我们对成年 Ts66Yah 小鼠进行了纵向分析(3 – 9 个月)。我们的数据支持 Ts66Yah 小鼠在年老时发生的行为改变,包括空间记忆缺陷检测的改善以及新的焦虑相关表型。对 Ts66Yah 小鼠海马分子通路的评估表明,随着年龄的增长,氧化还原平衡、蛋白质稳态、应激反应、代谢通路、程序性细胞死亡和突触可塑性的调节异常。有趣的是,这些通路中观察到的基因型驱动的变化发生在早期,促进了大脑发育的改变和过早衰老的发生。反过来,衰老可能是导致随后的海马退化的原因,这种退化具有典型的神经病理学特征。此外,对性别对海马机制改变的影响的分析只显示出轻微的影响。总体而言,在 Ts66Yah 中收集的数据提供了新颖而综合的见解,涉及与衰老相关的导致大脑病理的三体性驱动过程。这反过来有助于弥合理解 DS 表型复杂性的现有差距。
通讯:纽约大学格罗斯曼医学院科学学院,医学博士Mario Delmar,医学博士,博士,Leon H. Charney科。435 E.30th St 707,纽约,纽约,10016,电子邮件mario.delmar@nyulangone.org;或Christopher D. Herzog博士,Rocket Pharmaceuticals,Inc,9 Cedar Brook Dr,Cranbury,NJ 08512,电子邮件cherzog@rocketpharma.com;或Marina Cerrone,医学博士,Leon H. Charney Charney科,纽约大学Grossman医学院科学学院。 435 E.30th St 723H,纽约,纽约,10016,电子邮件marina.cerrone@nyulangone.org *c.j.m。 van Opbergen和B. Narayanan同样贡献。 补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circgen.123.004305获得。 有关资金和披露的来源,请参见第XXX页。 ©2024 American Heart Association,Inc。435 E.30th St 707,纽约,纽约,10016,电子邮件mario.delmar@nyulangone.org;或Christopher D. Herzog博士,Rocket Pharmaceuticals,Inc,9 Cedar Brook Dr,Cranbury,NJ 08512,电子邮件cherzog@rocketpharma.com;或Marina Cerrone,医学博士,Leon H. Charney Charney科,纽约大学Grossman医学院科学学院。435 E.30th St 723H,纽约,纽约,10016,电子邮件marina.cerrone@nyulangone.org *c.j.m。 van Opbergen和B. Narayanan同样贡献。 补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circgen.123.004305获得。 有关资金和披露的来源,请参见第XXX页。 ©2024 American Heart Association,Inc。435 E.30th St 723H,纽约,纽约,10016,电子邮件marina.cerrone@nyulangone.org *c.j.m。van Opbergen和B. Narayanan同样贡献。补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circgen.123.004305获得。有关资金和披露的来源,请参见第XXX页。©2024 American Heart Association,Inc。
摘要,收益降低,传统临床前和基于动物的药物发现策略的临床衰竭率降低,并且正在将更多的重点放在替代药物发现平台上。ex vivo方法代表了更传统的基于临床前动物的模型和基于临床的策略,并旨在在药物发现的早期阶段解决肿瘤内和患者间的变异性。此外,这些方法还可以在肿瘤切除的一周内为患者提供精确的治疗分层,以直接定制治疗。一个可以从这种离体方法中显着受益的肿瘤组是高级神经胶质瘤,它们表现出广泛的异质性,细胞可塑性和耐药性神经胶质瘤干细胞(GSC)壁ches。对这些肿瘤的基于鼠的临床前模型的历史用途在很大程度上未能产生新的疗法,从而导致过去50年后诊断后约12-15个月的相对停滞和不可接受的生存率。如果我们能够在临床前模型中识别出有效的药物组合,可以更好地反映复杂的复杂 - 尤其内的异质性,GSC塑性和固有的DNA损伤机制,那么在标准护理(SOC)治疗方案中,手术切除(SOC)治疗方案中的近乎普遍使用损坏化学疗法就可以改善当前治疗。因此,我们已经开发和
摘要转移仍然是全球与癌症相关死亡的主要原因。因此,提高治疗疗效对这种肿瘤是至关重要的,这对于增强患者的生存至关重要。au-011(Belzupacap sarotalocan)是一种新的类似病毒的药物结合物,目前正在临床发育中,用于治疗眼睛中小脉络膜黑色素瘤和高风险不确定的病变。在光激活后,AU-011诱导了促炎和促性免疫原性的快速坏死细胞死亡,导致抗肿瘤的免疫反应。作为AU-011诱导全身性抗肿瘤免疫反应,我们研究了这种组合疗法是否也将有效地抵抗远处,未处理的肿瘤,作为通过潜线免疫作用治疗局部和远处肿瘤的模型。我们比较了将AU-011与几种不同检查点阻断抗体相结合的功效,以鉴定体内肿瘤模型中的最佳治疗方案。我们表明,AU-011通过释放和暴露与损伤相关的分子模式(DAMP)诱导免疫原性死亡,从而导致树突状细胞在体外成熟。此外,我们表明,随着时间的推移,AU-011在MC38肿瘤中积聚,并且ICI增强了AU-011对小鼠中既定肿瘤的功效,从而对所有带有单个MC38肿瘤的治疗动物的特定组合产生了完全反应。最后,我们表明AU-011和抗PD-L1/抗LAG-3抗体处理是潜线模型中的最佳组合,诱导了大约75%的动物的完全反应。我们的数据显示,将Au-011与PD-L1和LAG-3抗体相结合以治疗原发性和远处肿瘤的可行性。
ZSWIM8 能破坏许多鼠类微小 RNA,并且是胚胎正常生长和发育所必需的 Charlie Y. Shi 1,2,3 , Lara E. Elcavage 1,2,3 , Raghu R. Chivukula 4 , Joanna Stefano 1,2,3 ,
摘要背景:基因设计的嵌合抗原受体(CAR)T淋巴细胞是有希望的癌症治疗工具。目前批准了四种汽车T细胞药物,包括Tisagenlecleucel(Tisa-Cel)(Tisa-Cel)和Axibabtagene-Ciloleucel(AXI-CEL),所有靶标CD19都被批准用于治疗B细胞恶性肿瘤。流式细胞仪(FC)仍然是使用重组生物素化靶蛋白的单层CAR T细胞的标准。尽管如此,需要其他工具,而挑战是开发一种简单,相关,高度敏感,可重现和廉价的检测方法。分子工具可以满足这种需求,以特别监视长期持续的汽车T细胞。方法:基于2个实验性CAR T细胞构建体IL-1RAP和CS1,我们设计了2个定量数字液滴(DDPCR)PCR分析。通过针对4.1BB/CD3Z(28BBz)或28/CD3Z(28Z)结面积,我们证明PCR分析可以应用于经过批准的CD19 CAR T药物。28Z和28BBZ DDPCR分析允许确定每个单元格的平均矢量拷贝数(VCN)。我们确认VCN取决于感染的多样性,并证实了我们的实验性或GMP样IL-1RAP CAR T细胞的VCN是否满足了临床部门的要求(<5 VCN/细胞),类似于批准的AXI-CEL或TISA-CEL药物。结果:28BBz和28Z DDPCR测定法应用于2个肿瘤(急性髓样白血病(AML)或多发性骨髓瘤(MM)异种移植物人源化NSG小鼠模型,使我们能够量化早期膨胀(到注射后的T细胞30)。最后,循环汽车T有趣的是,在初始膨胀之后,当肿瘤挑战循环的CAR T细胞时,我们注意到了第二个膨胀阶段。对骨髓,脾脏和肺的研究表明,在先前注射白血病细胞系的小鼠中,在这些组织中散布更多的CAR T细胞。