本研究为现有关于如何将人工智能 (AI) 融入全球学校系统的研究做出了贡献。本研究探讨了在职教师对将人工智能融入学校的准备情况。我们在南非学校系统的背景下进行了这项研究,受试者是科学、社会科学、数学和语言等不同专业的教师。借鉴扩展的技术接受和使用统一理论 (UTAUT2),我们通过技术整合、社会影响、人工智能伦理、态度、TPACK、感知自我效能、人工智能专业发展和人工智能准备八个变量收集了教师的观点。为了分析本研究涉及的 430 名教师的数据,我们使用了结构方程模型分析方法和 SmartPLS 软件版本 4.1.0.0。我们的结果表明,技术整合、社会影响、态度和感知自我效能会影响教师对人工智能的准备。然而,TPACK 和道德并不影响教师为将人工智能融入学校所做的准备。本研究进一步基于变量的中介和调节分析提出了有趣的见解。我们讨论我们的发现并强调它们对实践和政策的影响。
引言 人工智能 (AI) 在数据、计算机处理能力和机器学习发展的帮助下,在全球范围内逐渐完善并成为一种更高效的技术,尤其是在过去的二十年里。因此,人工智能在各个领域的日常生活中得到越来越频繁的使用。这项技术的一些不同用途包括语音识别、生物特征认证、移动测绘、导航系统、交通和交通控制、管理、制造、供应链管理、数据收集和控制有针对性的在线营销。因此,人工智能在军事领域也拥有广泛的应用也就不足为奇了 [1]。军事能力是当前衡量一个国家或民族“实力”的指标。美国国防部将军事能力定义为“实现某一作战目标(赢得战争或战斗、摧毁一组目标)的能力”。它直接或间接地受到现代化、结构、准备和可持续性的影响。装备、武器库和技术复杂程度在很大程度上决定了现代化程度 [2]。互联网正在取代自第二次世界大战开始以来发动战争的传统方式。研究表明,针对人工智能领域的营利性公司和政府机构的黑客攻击现在越来越普遍。研究人员认为,现代自主系统和人工智能 (AI) 有望在未来的军事对抗中发挥关键作用 [3]。最近的科学出版物表明,神经网络技术在当今的网络战中非常普遍。智能交通系统 (ITS) 的发展是主要的例子之一,还有预测和评估环境现象、将信息推文与非信息推文(包含谣言或不详细的无关数据)区分开来以及预测动态外汇常规市场。这种类型的增强器以多种方式帮助军事领域,并成为发展军事能力的最重要武器 [4]。军事决策中应考虑各种资源和能力的数据(人力资源、战斗和支援车辆、直升机、尖端情报和通信设备、火炮和导弹),这些资源和能力可以执行各种类型的复杂任务,例如情报收集、调动、直接和间接火力、基础设施和运输
研究兴趣:我的研究兴趣涵盖了纳米技术和材料科学的广泛前沿课题。其中包括有机发光二极管 (OLED) 的开发,它在现代显示和照明技术中发挥着至关重要的作用。我还专注于有机-无机纳米复合材料,特别是它们在创新纳米设备中的应用。我研究的一个关键领域是光伏太阳能电池的开发,目标是提高其效率和可持续性。此外,我对无机纳米粒子和纳米棒的合成以及金属纳米粒子的绿色合成有着浓厚的兴趣,它们为各个行业提供了有前途的环保应用。我还探索相变材料 (PCM) 在储能和先进材料应用方面的潜力。短期研究访问:
### About Mitsubishi Electric Corporation With more than 100 years of experience in providing reliable, high-quality products, Mitsubishi Electric Corporation (TOKYO: 6503) is a recognized world leader in the manufacture, marketing and sales of electrical and electronic equipment used in information processing and communications, space development and satellite communications, consumer electronics, industrial technology, energy, transportation and building equipment.三菱电气本着其“更好的变化”的精神来丰富社会。该公司的收入为截至2024年3月31日的财政年度。有关更多信息,请访问www.mitsubishielectric.com *美国。美元金额以¥151 =美国1美元的价格转化为1美元,这是2024年3月31日关于Musashi Energy Solutions Co.,Ltd. Musashi Energy Solutions,Musashi Energy Solutions的大约比率。这是一种可持续的能源设备,有望迈向实现碳中性社会的重要一步。Musashi Energy Solutions网站:https://www.musashi-es.co.jp/en/关于Musashi Seimitsu行业有限公司,有限公司Musashi Seimitsu行业有限公司,是全球汽车零件Tier1汽车和摩托车公司的全球汽车零件Tier1公司,其总部在日本中,可在ToyoHashi中。它拥有35个制造地点,遍布欧洲,北美,中国和东南亚。Musashi AI是铅行业4.0的领先AI技术子公司,是其中之一。Musashi专门设计,开发和制造产品,例如差速器组件,变速箱和组件以及连锁和悬架(L&S)产品,尤其是针对未来的汽车,包括电动和自动驾驶汽车。Musashi还通过与全球初创公司的开放创新来创造并扩大新业务,以为更广泛的商业领域的可持续发展目标做出贡献。musashi网站:https://www.musashi.co.jp/en/客户查询Itami Works Works Mitsubishi Electric Corporation energe corperiation@pd.mitsubishielectric.co.jp Musashi Energy Solutions Co. 0551-38-8008传真0551-38-8009媒体查询公共关系部Mitsubishi Electric Corporation prd.gnews@nk.mitsubishielectric.co.jp Musashi Seimitsu行业公司0532-25-2753 info_msi@musashi.co.jp
摘要RNA识别基序(RRM)是自然界中最常见的RNA结合蛋白结构域。然而,含RRM的蛋白质仅在真核门中普遍存在,它们在其中扮演中心的调节作用。在这里,我们设计了一种与哺乳动物RNA结合蛋白Musashi-1的大肠菌中基因表达的正交后转录控制系统,该系统是具有神经发育作用的干细胞标记物,其中包含两个规范的RRM。在电路中,由于与Messenger RNA的N末端编码区域的特定相互作用及其对脂肪酸的反应,因此在转录中受到转录调节,并作为变构翻译阻遏物。我们通过评估一系列RNA突变体的体外结合动力学和体内功能,完全表征了种群和单细胞水平的遗传系统和单细胞水平,显示了报告基因表达的显着折叠变化以及潜在的分子机制。通过自下而上的数学模型很好地概括了系统的动态响应。此外,我们应用了用Musashi-1设计的转录后机制来特异性调节操纵子内的基因,实施组合调节并减少蛋白质表达噪声。这项工作说明了如何将基于RRM的调节适应简单的生物,从而在原核生物中添加了用于翻译控制的新调节层。
摘要:Musa Paradisiaca L. var semeru(MPS)是一种香蕉,皮肤厚,可产生未使用的废物。在本研究中探索了香蕉皮乙醇提取物(BPE)的潜在抗焦虑作用。这项研究中有七组,即正常对照组CMC NA,Alprazolam(0.4 mg/kg),色氨酸(270 mg/kg),5-HTP(18 mg/kg),BPE(140,280 mg/kg)。灯光盒(LDA)测试中每组大鼠的数量为4。同时,高架迷宫(EPM)测试中每组的大鼠数量为6。bpe(140和280 mg/kg)在使用LDA和EPM进行抗焦虑测试前一小时将大鼠提供给大鼠。bpe(140和280 mg/kg)并未显着增加在灯光盒的轻室中所花费的条目和时间。此外,它也没有显着影响在高架迷宫中张开双臂上花费的条目和时间。指的是LDA和EPM测试,MPS的乙醇提取物并不能显着减轻焦虑。
在所有水果样品中,最低计数(6.74±0.48–6.76±0.42 log CFU/ml)和所有水果样品的最大计数(7.51±0.43–7.96±0.34 log cfu/ml)在成熟的绿色和果实阶段分别观察到所有水果样品的AMB中。成熟阶段在所有水果中都显着影响了微生物计数(p <0.05),除了香蕉和橙色的肠杆菌科和橙色计数外,以及橙色的真菌计数。所有水果的细菌群落均由b。Cereus(33.7%),a。粪便(17.3%),p。putida(15.2%),m。Morganii(11.1%),s。Sciuri(6.6%)和s。表皮(4.9%);而真菌微生物组由念珠菌属构成。(33.9%),其次是Saccharomyces spp。(18.1%)和曲霉属。(16.3%)。成熟阶段也显着影响了所有样本中的物理化学特性。因此,最低的pH(3.53)和抗坏血酸的最高含量(69.87 mg/ div>
Hibikino-Musashi@Home (HMA) 是一个由日本九州工业大学和北九州大学的学生组成的机器人开发团队。该团队成立于 2010 年,曾参加过开放平台联盟 (OPL)、国内标准平台联盟 (DSPL) 和 Simulation-DSPL 的 RoboCup@Home JapanOpen。自 2017 年以来,它一直定期参加 RoboCup@Home 联赛,并将参加 RoboCup 2024,展示其最新开发和研究成果。除了 RoboCup,该团队还参加了 2018 年和 2020 年世界机器人挑战赛 (WRC) 以及伙伴机器人挑战赛 (真实空间) 的服务机器人类别。HMA 专注于机器人视觉系统的开发,特别是用于训练对象识别系统的数据集生成系统。它还开发了用于原始任务的库,包括对象识别、抓取点估计和导航。任务规划是他们最新感兴趣的主题,它使用大型语言模型 (LLM) 通过在动态环境中选择原始任务来规划任务。
摘要结节蛋白和结节蛋白样蛋白在豆类和根茎细菌之间的共生关联中起着至关重要的作用。它们的作用超出了豆科物质,因为在各种非纤维化植物中已经鉴定出了许多结节蛋白样蛋白,包括早期结节蛋白样蛋白(ENODL),这意味着它们参与了超越淋巴结的功能,例如营养运输和生长调节。一些ENODL蛋白与植物防御病原体有关,这在感染了Xanthomonas Campestris PV的香蕉中很明显。Musacearum(XCM)引起香蕉Xanthomonas Wilt(BXW)疾病。尽管如此,ENODL在植物防御中的特定作用仍有待完全阐明。发现,在耐BXW的香蕉祖细胞“ musa balbisiana”中发现了穆萨诺德尔3基因,在XCM早期感染后,在抗BXW敏感的品种“ gonja manjaya”中被上调了20倍。为了进一步揭示ENODL基因在疾病抗性中的作用,CRISPR/CAS9系统被用来破坏“ gonja Manjaya”中的musaenodl3基因。对ENODL3编辑事件的分析确认了对Musaenodl3基因的准确操纵。抗病性和基因表达分析表明,编辑Musaenodl3基因会导致对BXW疾病的抗性,其中50%的编辑植物无症状。对Musaenodl3基因的识别和操纵强调了其作为植物病原体相互作用的关键参与者的潜力,为诸如Banana,重要的主食粮食作物和热带资源农民的收入来源提供了新的机会。这项研究提供了ENODL3基因在发展抗病植物中的直接作用的第一个证据。
引言人口增加将增加食物需求。提高食品生产力以实现国内粮食主权的一种方法是应用生物技术。生物技术解决了包括印度尼西亚在内的世界粮食危机的挑战和威胁。必须进行具有生物技术的食品作物,以预测世界粮食危机的危险,预计将从2050年开始达到顶峰。生物技术还可以回答全球气候变化,水危机以及减少农药和世界碳排放。fao预测,食品需求将增加多达60%,以使世界人口不会陷入贫困和饥饿状态。香蕉植物是发展中国家之后的第四大作物,仅次于大米,小麦和玉米。从营养的角度来看,香蕉是使印度尼西亚主食多样化的绝佳机会。根据中央统计局(BPS)记录,印度尼西亚的香蕉生产在2022年达到960万吨。显示出比上一年高9.79%的图,为874万吨。