抽象背景信息:糖尿病(DM)在新兴国家和发达国家都大大峰值,并且使用营养方法来控制糖尿病控制,最近引起了很多关注。香蕉(Musa spp。)在世界热带地区无处不在。在热带和亚热带气候中发现了野生植物穆萨·阿克米纳塔(Musa acuminata),也称为卡文迪许香蕉。近年来,敏锐的敏锐的健康优势引起了很多关注。植物的每个组成部分都被用于传统医学治疗多种疾病。虽然已经报道了Musa Acuminata各个部分的抗糖尿病潜力,但尚未对CORM进行广泛的研究。目的:考虑到缺乏有关抗糖尿病性抗糖尿病潜能的数据,我们建议使用斑马鱼模型评估相同的数据。材料和方法:腹膜内施用链霉菌素(STZ)在斑马鱼中诱导糖尿病。将鱼类维持在2%的蔗糖溶液中,用于48小时,以诱导糖尿病,然后将其转移到10、20或30 µg/ml的相应的含有CORM提取物的治疗罐中;在第8天,它们都被安乐死并用于生化和组织病理学分析。结果:在10、20和30 µg/ml时,穆萨·阿克米纳塔(Musa acuminata Corm)提取物(MACE)在糖尿病斑马鱼模型中引起了明显的葡萄糖降低作用。这是从酶分析中可以明显看出的。在这一点上,这项研究中鉴定出的MACE的抗糖尿病潜力的精确作用方式无法完全解密。组织病理学分析还揭示了绒毛的生长增长,并且在经过MACE治疗组的肠道中增加了杯状细胞的数量。结论:MACE在预防糖尿病并发症等高胆固醇和高脂血症等糖尿病并发症中的作用支持其主张,即它可以用作辅助药物或替代其他糖尿病药物。需要进行其他研究才能缩小负责这种效果的主动植物成分以及发挥这种作用的机制。
摘要。Mahmudi M,Arsad S,Lusiana ED,Musa M,Fitrianesia F,Ramadhan SF,Arif AR,Savitri FR,Dewinta AA,Ongkosongo AD。2023。印度尼西亚东爪哇省Pasuruan和Sidoarjo沿海地区不同栖息地特征的微藻多样性。生物多样性24:4418-4426。微藻是生活在各种栖息地中的微观真核生物。这项研究的目的是确定几个亚藏人中微藻的类型和丰度,包括沉积物,红树林,水柱和人造底物;并分析影响丰度微藻的环境因素。这项研究是在印度尼西亚东爪哇省帕苏鲁安和西多尔霍的沿海地区的多个地点进行的。使用目的抽样方法应用了一种定量描述方法。使用净用于浮游微藻的净和采样图收集样品。使用NMD(非金属多维缩放)对微藻进行分组,并使用CCA(规范对应分析)分析了微藻丰度与水质参数之间的关系。结果表明,在所有研究地点都发现了芽孢杆菌科,氰基科和叶绿体类别,但是trebouxiophyceae和dinophyceae仅在帕苏鲁安海滩发现。在Sidoarjo的Wughoyo Beach的沉积物栖息地中发现了最高的微藻,并以706,605 Ind。cm -2。CCA分析表明,在所有部位都发现了芽孢杆菌科,表明其适应性很高。两个沿海地区的多样性,均匀性和优势指数范围为1.43-2.61; 0.71-0.96;和0.06-0.27。使用NMDS的相似性分析表明,这三个站点之间没有相似性,这表明每个位点都有很高的微藻变化。该分析的结果表明,特定栖息地具有独特的微藻多样性,因此保留多种栖息地类型很重要。
2023 算子代数及其应用研讨会:与逻辑的联系,菲尔兹研究所,多伦多。2023 C ∗ -代数:张量积、近似和分类,E. Kirchberg 纪念,明斯特。2023 非交换谐波分析和量子信息,米塔格莱弗研究所。2023 算子代数的现代趋势,Ed Effiros 纪念,加州大学洛杉矶分校。2023 座谈会,加州大学圣地亚哥分校,概率算子代数研讨会,加州大学伯克利分校。2022 加拿大算子代数研讨会 (COSy),渥太华,全体会议发言人。2022 北英国泛函分析研讨会 (NBFAS),英国纽卡斯尔,全体会议演讲。2022 北方的非交换性,查尔姆斯大学,哥德堡,全体会议发言人。 2021 函数分析研讨会,加州大学洛杉矶分校。2021 量子概率和非交换谐波分析,莱顿洛伦兹中心。2021 算子研讨会,首尔国立大学。2021 国际算子理论与应用研讨会 (IWOTA),兰卡斯特,半全体会议。2021 团体聚会 C*-代数庆祝 Siegfried Echterhoff 60 岁生日,明斯特。2021 算子代数暑期学校,渥太华大学。讲座系列(4 × 60 分钟)。2021 算子代数特别周,华东师范大学算子代数研究中心,上海。2021 量子信息论中的非局部博弈,AIM 研讨会。2019 C*-代数研讨会,Oberwolfach 数学研究所。 2019 多面 Connes 嵌入问题,班夫 BIRS 研讨会。2019 巴塞罗那 CRM 几何、拓扑和代数高级课程(2 × 60 分钟)。2019 专题计划算子代数、群和 QIT 的应用,ICMAT,Lect 系列 5 × 90 分钟。2019 数学图像语言研讨会,哈佛大学。2019 二十一世纪的算子代数,宾夕法尼亚大学,费城。2019 悉尼的子因子:算子代数、表示论、量子场论,新南威尔士大学悉尼。2019 Connes 嵌入问题和 QIT,奥斯陆大学冬季学校,讲座系列(4 x 60 分钟)。2018 2018 概率算子代数研讨会,加州大学伯克利分校。2018 座谈会,隆德大学。2017 量子信息理论中的专题程序分析,IHP Paris,讲座系列(2 x 90 分钟)。2017 C ∗ -代数中的青年女性(YMC ∗ A),哥本哈根大学,主讲师。2016 当前量子信息理论中的数学方面,韩国大田。2015 乔治布尔数学科学会议,科克。2015 加拿大算子代数研讨会(COSy),滑铁卢,全体发言人。2014 加拿大算子代数研讨会(COSy),多伦多,全体发言人。2013 Banach 代数及其应用,查尔姆斯大学,哥德堡,全体发言人。 2013 年算子空间、谐波分析和量子概率研讨会,马德里。2012 年北英泛函分析研讨会 (NBFAS),英国牛津,讲座系列(3x 60 分钟)。2012 量子信息理论中的算子结构,BIRS,班夫。2011 EMS-RSME 联合数学周末,毕尔巴鄂。2011 C ∗ -代数和相关主题会议,RIMS,京都。2011 大平原算子理论研讨会 (GPOTS),亚利桑那州坦佩,全体会议发言人。
图1:热点模拟方法。我们通过将其应用于Musashi-1的RRM1域来证明这种方法。(a)MSI1 / RNA复合物的结构。RNA(棍棒)围绕蛋白质包裹(球形)。将两个相邻的碱基A106和G107(洋红色)埋在蛋白质表面的浅口袋中。(b)通过收集涉及分子间氢键的深埋碱(洋红色)和原子(以黄色显示的供体,绿色供体显示),从复合物中的RNA产生了相互作用图。(c)相互作用图的组成部分聚集在空间中,不参与氢键的原子将其恢复为碳原子。这会产生“热点药理”。 (d)通过与荧光标记的RNA竞争确定的带有单个无碱性位点与原始同源RNA序列的RNA之间结合自由能的差异。正值表明当给定基碱被无碱位点替换时,结合减少,表明A106和G107对这种相互作用的结合亲和力的贡献大于附近的其他碱基。(e)热点药效团是基于配体筛选的模板,寻找可以模仿药效团的三维特征的化合物。屏幕导致化合物R12的鉴定,该复合R12模拟了环的几何形状,并提供了四个所需的氢键组中的三个。(F)R12与荧光素标记的RNA竞争MSI1结合,如通过荧光极化测定所观察到的。这些数据不允许确定结合亲和力。(g)热点药效团回到蛋白质结构上的叠加说明了应由理想配体捕获的相互作用:针对三个芳族侧级堆叠,以及四个分子间氢键。(H)R12在蛋白质结构上的叠加表明,该化合物有望保留芳香族堆积,并概括了四个氢键中的三个。
摘要背景:自卢旺达爆发 COVID-19 疫情以来,已收集了大量 SARS-COV-2/COVID-19 相关数据,包括 COVID-19 检测和医院常规护理数据。不幸的是,这些数据分散在不同的数据结构或格式的孤岛中,无法用于增进对疾病的了解、监测其进展并生成指导预防措施的证据。该项目的目标是利用人工智能 (AI) 和数据科学技术协调数据集,以支持卢旺达政府监测和预测 COVID-19 负担的需求,包括医院入院率和总体感染率。方法:该项目将收集现有数据,包括医院电子健康记录 (EHR)、COVID-19 检测数据,并与社区调查的纵向数据相链接。观察性健康数据科学与信息学 (OHDSI) 的开源工具将用于通过观察性医疗结果伙伴关系 (OMOP) 通用数据模型 (CDM) 协调医院 EHR。该项目还将利用其他 OHDSI 工具进行数据分析和网络集成,以及 R Studio 和 Python。该网络将包括卢旺达多达 15 家医疗机构,其 EHR 数据将与 OMOP CDM 协调。预期结果:这项研究将产生一个技术基础设施,其中 15 家参与的医院和健康中心将在本地 Mac Mini(“数据节点”)上拥有 OMOP CDM 格式的 EHR 数据,以及一组 OHDSI 开源工具。中央服务器或门户将包含参与站点的数据目录,以及用于定义和管理分布式研究的 OHDSI 工具。中央服务器也会整合这些信息
血液中的抽象钾浓度对于患有慢性肾脏疾病的大量患者群体起着至关重要的作用。连续监测血钾对于降低相关风险至关重要。基于家庭护理的小型测量套件将提高患者安全性并降低医疗费用。当前,离子选择电极(ISE)正在进化用于血液钾监测的应用。常规ISE是电位计量学或导电测量值。常规ISE需要一个参考电极来比较离子浓度的变化。这些参考电极由于不适当的填充溶液,连接堵塞和泄漏而随时间漂移,因此限制了传感器的寿命。在本文中,我们使用基于阻抗的测量来开发了一种无参考的固态ISE,以感知钾离子以克服漂移问题。使用阻抗测量评估钾选择性膜上钾选择性膜的灵敏度和选择性。开发的ISE在钾溶液(KCL)中以各种浓度扫描。另外,通过将电极存储在1 mM KCl溶液中40天来评估所提出的钾选择性电极的寿命。因此,微型钾选择性电极可以帮助那些需要连续监测血液钾水平的患者。
商业银行等服务和产品组织面临着确保满足众多客户需求(满意度)的义务。商业银行是那些从事节省客户资金和其他贵重物品以及其他产品和服务业务的金融机构,它们使用不同的营销沟通渠道与客户接触。营销活动非常繁多,其中最重要的挑战之一是确定用于接触特定目标受众的最佳渠道。因此,在当今竞争如此激烈且消费者动态的商业环境中,确定最佳沟通渠道以有效满足客户期望至关重要。鉴于信息传播渠道众多,我们将关注直接营销。根据 Akaah 等人 (1995) 的说法,直接营销试图向目标群体提供产品,并根据客户量身定制信息。Kotler & Armstrong (1998) 指出,直接营销以七 (8) 种不同的方式进行。即面对面营销、邮件营销、电话营销、直接应答电视营销、目录营销、信息亭营销和在线营销等七种不同的沟通媒介。
缺乏健康和改良的种植材料是香蕉和芭蕉生产扩张的主要制约因素。由于缺乏生产和分销优质种植材料的正规系统,情况更加恶化,迫使农民依靠植物的自然再生来供应。这通常是一个非常缓慢的过程,并且会产生少量的种植材料,这些材料很可能被土壤传播的病原体(如线虫)污染。为了克服这一制约因素,已经开发了几种技术来快速繁殖香蕉和芭蕉种植材料,包括在实验室无菌条件下进行微繁殖。虽然微繁殖技术可以提供大量的种植材料,但它们并不适合小农户的条件。因此,对于这些农民来说,不需要太多技术技能或设备的用户友好型技术将更具吸引力。国际热带农业研究所 (UTA) 一直在寻找替代方法来生产种植材料,以大规模分销改良的香蕉和芭蕉品种。替代方法分为两类:基于完全或部分去掉根茎的田间技术;以及远离田间的根茎大繁育技术。强烈建议对根茎进行处理以降低传播土壤污染物的风险,这是小农户传播方案中不可或缺的一部分。大繁育技术虽然依赖于基因型,但可以在 15 天内产生 8-15 株新植物/球茎,而对新长出的芽进行二次划痕处理有可能在相同的时间内将幼苗数量进一步增加 2-3 倍。通过这种方法获得的幼苗具有微繁幼苗的一致性,同时不易受到田间后期因素的影响。这种方法简单便宜,虽然需要一些最低限度的投资来建立繁育设备和断奶设施,因此适合中小型企业。然而,其利用受到多种因素的阻碍,其中最关键的是缺乏初始资本投资和技术技能。