### About Mitsubishi Electric Corporation With more than 100 years of experience in providing reliable, high-quality products, Mitsubishi Electric Corporation (TOKYO: 6503) is a recognized world leader in the manufacture, marketing and sales of electrical and electronic equipment used in information processing and communications, space development and satellite communications, consumer electronics, industrial technology, energy, transportation and building equipment.三菱电气本着其“更好的变化”的精神来丰富社会。该公司的收入为截至2024年3月31日的财政年度。有关更多信息,请访问www.mitsubishielectric.com *美国。美元金额以¥151 =美国1美元的价格转化为1美元,这是2024年3月31日关于Musashi Energy Solutions Co.,Ltd. Musashi Energy Solutions,Musashi Energy Solutions的大约比率。这是一种可持续的能源设备,有望迈向实现碳中性社会的重要一步。Musashi Energy Solutions网站:https://www.musashi-es.co.jp/en/关于Musashi Seimitsu行业有限公司,有限公司Musashi Seimitsu行业有限公司,是全球汽车零件Tier1汽车和摩托车公司的全球汽车零件Tier1公司,其总部在日本中,可在ToyoHashi中。它拥有35个制造地点,遍布欧洲,北美,中国和东南亚。Musashi AI是铅行业4.0的领先AI技术子公司,是其中之一。Musashi专门设计,开发和制造产品,例如差速器组件,变速箱和组件以及连锁和悬架(L&S)产品,尤其是针对未来的汽车,包括电动和自动驾驶汽车。Musashi还通过与全球初创公司的开放创新来创造并扩大新业务,以为更广泛的商业领域的可持续发展目标做出贡献。musashi网站:https://www.musashi.co.jp/en/客户查询Itami Works Works Mitsubishi Electric Corporation energe corperiation@pd.mitsubishielectric.co.jp Musashi Energy Solutions Co. 0551-38-8008传真0551-38-8009媒体查询公共关系部Mitsubishi Electric Corporation prd.gnews@nk.mitsubishielectric.co.jp Musashi Seimitsu行业公司0532-25-2753 info_msi@musashi.co.jp
摘要RNA识别基序(RRM)是自然界中最常见的RNA结合蛋白结构域。然而,含RRM的蛋白质仅在真核门中普遍存在,它们在其中扮演中心的调节作用。在这里,我们设计了一种与哺乳动物RNA结合蛋白Musashi-1的大肠菌中基因表达的正交后转录控制系统,该系统是具有神经发育作用的干细胞标记物,其中包含两个规范的RRM。在电路中,由于与Messenger RNA的N末端编码区域的特定相互作用及其对脂肪酸的反应,因此在转录中受到转录调节,并作为变构翻译阻遏物。我们通过评估一系列RNA突变体的体外结合动力学和体内功能,完全表征了种群和单细胞水平的遗传系统和单细胞水平,显示了报告基因表达的显着折叠变化以及潜在的分子机制。通过自下而上的数学模型很好地概括了系统的动态响应。此外,我们应用了用Musashi-1设计的转录后机制来特异性调节操纵子内的基因,实施组合调节并减少蛋白质表达噪声。这项工作说明了如何将基于RRM的调节适应简单的生物,从而在原核生物中添加了用于翻译控制的新调节层。
Hibikino-Musashi@Home (HMA) 是一个由日本九州工业大学和北九州大学的学生组成的机器人开发团队。该团队成立于 2010 年,曾参加过开放平台联盟 (OPL)、国内标准平台联盟 (DSPL) 和 Simulation-DSPL 的 RoboCup@Home JapanOpen。自 2017 年以来,它一直定期参加 RoboCup@Home 联赛,并将参加 RoboCup 2024,展示其最新开发和研究成果。除了 RoboCup,该团队还参加了 2018 年和 2020 年世界机器人挑战赛 (WRC) 以及伙伴机器人挑战赛 (真实空间) 的服务机器人类别。HMA 专注于机器人视觉系统的开发,特别是用于训练对象识别系统的数据集生成系统。它还开发了用于原始任务的库,包括对象识别、抓取点估计和导航。任务规划是他们最新感兴趣的主题,它使用大型语言模型 (LLM) 通过在动态环境中选择原始任务来规划任务。
图1:热点模拟方法。我们通过将其应用于Musashi-1的RRM1域来证明这种方法。(a)MSI1 / RNA复合物的结构。RNA(棍棒)围绕蛋白质包裹(球形)。将两个相邻的碱基A106和G107(洋红色)埋在蛋白质表面的浅口袋中。(b)通过收集涉及分子间氢键的深埋碱(洋红色)和原子(以黄色显示的供体,绿色供体显示),从复合物中的RNA产生了相互作用图。(c)相互作用图的组成部分聚集在空间中,不参与氢键的原子将其恢复为碳原子。这会产生“热点药理”。 (d)通过与荧光标记的RNA竞争确定的带有单个无碱性位点与原始同源RNA序列的RNA之间结合自由能的差异。正值表明当给定基碱被无碱位点替换时,结合减少,表明A106和G107对这种相互作用的结合亲和力的贡献大于附近的其他碱基。(e)热点药效团是基于配体筛选的模板,寻找可以模仿药效团的三维特征的化合物。屏幕导致化合物R12的鉴定,该复合R12模拟了环的几何形状,并提供了四个所需的氢键组中的三个。(F)R12与荧光素标记的RNA竞争MSI1结合,如通过荧光极化测定所观察到的。这些数据不允许确定结合亲和力。(g)热点药效团回到蛋白质结构上的叠加说明了应由理想配体捕获的相互作用:针对三个芳族侧级堆叠,以及四个分子间氢键。(H)R12在蛋白质结构上的叠加表明,该化合物有望保留芳香族堆积,并概括了四个氢键中的三个。