摘要:骨骼肌是一种高度可塑的组织,在急性和阻力运动中表现出显著的适应能力,并改变其组成以适应使用和废用,这一过程称为肌肉可塑性。热休克蛋白 (HSP) 是一类进化保守的分子伴侣,与骨骼肌可塑性的调节有关。在这里,我们总结了支持以下观点的关键发现:HSP 是维持骨骼肌完整性和功能性所必需的重要成分。HSP 参与肌生成所需的转录程序,并在肌肉运动和损伤后被激活。它们的功能障碍(无论是由于表达不当还是基因突变导致)都会导致肌肉萎缩并导致肌病和周围运动神经病的发展。在运动神经病中观察到神经支配/神经支配和反复的神经退化/再生,这表明 HSP 表达和功能失衡可能会损害神经肌肉接头的修复。增强 HSP 活性可能有助于通过促进肌肉分化和帮助修复 NMJ 来防止肌肉萎缩。增强 HSP 功能还可能有助于对抗横纹肌肉瘤 (RMS) 的发展,这是一种高度侵袭性的儿童软组织肉瘤,其细胞具有骨骼肌特征,但无法完全分化为骨骼肌细胞。
摘要:已知肌氨酸可以改善大脑功能。肠道细胞与神经元细胞之间carnosine介导的相互作用的分子基础是,肌肽作用于肠细胞上并刺激外泌体分泌,这可以诱导神经元细胞中的神经突生长。这项研究旨在推断肌肉细胞与神经元细胞之间的肉瘤介导的相互作用。结果表明,肌肽诱导肌肉细胞分化,以及可以作用于神经元细胞的外泌体和肌动物的分泌。carnosine不仅对肠细胞,而且对肌肉细胞作用,刺激分泌因子的分泌,包括诱导神经元细胞中神经突生长的外部因素,以及已知参与神经元细胞活化的肌动物。作为肉瘤治疗后从肠细胞和肌肉细胞分泌的外泌体中的miRNA是不同的,可以假定肉豆蔻苷在每个细胞上作用于每个细胞,通过单独的因素和机制与神经元细胞相互作用。
摘要:当一个人最小化运动至今未检测到相关的肌肉激活的程度时,观察到准运动(QM)。同样,对于假想运动(IM)和明显的运动,QM伴随着EEG感觉运动节奏的事件相关的对异步(ERD)。更强的ERD。但是,差异可能是由于QMS中剩余的肌肉激活可能引起的,该肌肉可能逃脱检测。在这里,我们使用敏感的数据分析程序重新检查了肌电图(EMG)信号(EMG)信号(EMG)信号和ERD之间的关系。与视觉任务和IMS相比,在QMS中观察到更多具有肌肉激活迹象的试验。但是,此类试验的速率与实际运动的主观估计无关。对侧ERD不依赖EMG,但与IMS相比,QMS中的EMG仍然更强。这些结果表明,大脑机制在严格的意义上是QMS常见的,并且“ Quasi-Quasi运动”(尝试执行相同任务并伴随可检测到的EMG升高),但它们与IMS之间有所不同。QM可能有助于更好地了解运动动作的研究,并建模与健康参与者在脑部计算机接口中尝试使用的运动。
目的:研究肌肉减少症指数在非糖尿病老年人中胰岛素抵抗发展的预测中的作用。设计:2年的随访队列。设置和参与者:前瞻性观察队列的Tanno-Sobetsu研究包括194名社区居住在2017 - 2019年期间的裸露糖尿病老年人。方法:下肢,上肢,阑尾和树干肌肉肿块通过生物电阻抗分析,握力强度,膝关节延伸扭矩和步行速度在基线的65岁(79名男性和115名女性)的研究参与者中测量。肌肉质量和强度除以重量,然后乘以100以计算重量比(%)。通过基线稳态模型(HOMA-IR)评估胰岛素抵抗,而在基线时HOMA-IR的研究参与者最多2年。研究终点是将胰岛素抵抗的发展定义为HOMA-IR 1.73。计算了每个肌肉减少症的调整后危害比(HR),以开发胰岛素抵抗的发展。结果:下肢肌肉质量(HR 0.88,95%CI 0.79-0.98)和阑尾肌肉质量(HR 0.89,95%CI 0.81-0.99),但与Sulin Notians and-Sulin and-Sulin and-aperalsion coss and a Geralception,Homa-Homa-belistal and waisist cellase and waisist cellase and waisist cellase and waisist cellase and waisist cellase and waisister,sulin sulin and sulin and sulin and sulin suliste co均与sulin抗性的发展有关。的结论和含义:下肢肌肉质量的丧失是脱离胰岛素抵抗的重要危险因素,独立于非糖尿病老年人的肥胖症。2022作者。下肢肌肉质量可能是预防老年人糖尿病的干预措施的新目标。由Elsevier Inc.代表AMDA E出版,急性和长期护理医学协会。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
材料的性能至关重要,如柔顺性、柔韧性以及与人机交互的整体安全性。通常,传统机器人材料的刚性和硬度限制了它们在某些医疗保健或生物医学领域的应用。[1–3] 材料科学的最新发展使得制造仿生软机器人成为可能,这种机器人能够执行一些简单类型的驱动 [4],包括爬行、[5] 抓握 [6] 或改变形状 [7],但它们仍然远远达不到生物体的复杂性和运动精细度。软机器人最受研究的应用之一是开发能够模仿哺乳动物天然肌肉组织性能的人造肌肉。肌肉组织本质上很复杂,既强壮又快速,同时通过其纤维束的有效自组织实现各种各样的运动。然而,目前的材料仍然缺乏完全复制这些特性的能力。 [8] 此外,人们强烈希望获得生物组织的其他特性,如自我修复、能源效率、功率重量比、适应性或生物传感等,但这些特性很难用人造软材料实现。[9] 生物混合机器人技术应运而生,作为一种协同策略,将生物实体和人造材料的最佳特性整合到更高效、更复杂的系统中,希望能克服当前软机器人面临的困难。已经提出了几种统一生物混合设备开发的策略
典型的肌肉由数千条并行工作的肌纤维组成,这些肌纤维被组织成较少数量的运动单位。运动单位由运动神经元及其所支配的肌纤维组成,这里用运动神经元 A1 表示。支配一块肌肉的运动神经元通常聚集在一个细长的运动核中,该运动核可能延伸到脊髓腹侧的一到四个节段。运动核的轴突通过几条腹根和周围神经离开脊髓,但被收集到靠近目标肌肉的一个神经束中。在图中,运动核 A 包括支配肌肉 A 的所有运动神经元;同样,运动核 B 包括支配肌肉 B 的所有运动神经元。每个运动神经元(图中未显示)的广泛分支的树突往往与来自其他核的运动神经元的树突混合在一起。
材料的性能至关重要,如柔顺性、柔韧性以及与人机交互的整体安全性。通常,传统机器人材料的刚性和硬度限制了它们在某些医疗保健或生物医学领域的应用。[1–3] 材料科学的最新发展使得制造仿生软机器人成为可能,这种机器人能够执行一些简单类型的驱动 [4],包括爬行、[5] 抓握 [6] 或改变形状 [7],但它们仍然远远达不到生物体的复杂性和运动精细度。软机器人最受研究的应用之一是开发能够模仿哺乳动物天然肌肉组织性能的人造肌肉。肌肉组织本质上很复杂,既强壮又快速,同时通过其纤维束的有效自组织实现各种各样的运动。然而,目前的材料仍然缺乏完全复制这些特性的能力。 [8] 此外,人们强烈希望获得生物组织的其他特性,如自我修复、能源效率、功率重量比、适应性或生物传感等,但这些特性很难用人造软材料实现。[9] 生物混合机器人技术应运而生,作为一种协同策略,将生物实体和人造材料的最佳特性整合到更高效、更复杂的系统中,希望能克服当前软机器人面临的困难。已经提出了几种统一生物混合设备开发的策略
目前体内和体外模型的局限性体现在大量新药候选物由于效率低下或对人体产生严重副作用而无法进入市场。这些缺点,加上监管部门限制使用动物模型,引起了人们对开发基于人体的类组织结构和生物传感器技术(如器官芯片,OOC)的兴趣,用于疾病建模和药物和化学测试。[1–3] 到目前为止,大多数 OOC 设备都代表单个器官,阻碍了对全身药物作用的研究。因此,这些微尺度组织模拟系统目前面临的挑战是试图提高对药物和毒性对各种器官或组织影响的预测。这对于研究多系统疾病尤其重要,因为几种组织与疾病密切相关,例如糖尿病 (DM) 的骨骼肌和胰岛。目前,代表各种器官或组织的多器官装置的例子很少。我们可以找到多种细胞类型(肝脏、肿瘤和骨髓或肺、肾和脂肪细胞)在单独的腔室中培养的例子,这些腔室相互连接并用于测试药物的毒性。[4,5] 或者共培养肠、肝和乳腺癌细胞,以评估肠道吸收、肝脏代谢和药物的抗靶细胞生物活性。[5] 尽管人们不断努力并有强烈的动机来取代动物试验,但这些多器官系统仍处于起步阶段。最近,功能齐全的组织已被纳入多器官方法。[6] 该装置通过循环血管流将心脏、肝脏、骨骼和皮肤组织连接起来,以研究药代动力学和药效学特征。然而,该装置没有结合传感技术来实时监测组织的代谢动态。糖尿病是一组以高血糖为特征的慢性代谢疾病。糖尿病是全球范围内的主要公共卫生问题,因为患有糖尿病的患者数量每年都在增加。[7] 2 型糖尿病 (T2D) 是这种疾病最常见的形式,占糖尿病病例的 90-95%。[8] 2 型糖尿病通常是由于外周代谢组织不再对胰岛素降低血糖水平的作用作出反应而引起的。骨骼肌是胰岛素的主要靶组织之一,也参与血糖稳态
您的客户在当地加油站购买的现代汽油与经典汽车或肌肉车发动机最初设计使用的含铅汽油有很大不同。联邦和州法规、环保问题以及降低对外国石油依赖的动力,为我们带来了改良汽油,在部分地区,这种汽油可能含有高达 10% 的乙醇。这些燃料不仅因地区而异,而且夏季和冬季也有不同的混合物。这些不同配方每加仑的能量比老式汽油至少少 2% 到 5%,而且挥发性也较低。随着汽油配方的变化,任何关心发动机性能和可靠性的人都需要密切关注点火和空气/燃料混合物的调整变化,以保持最高的发动机效率。20 世纪 50 年代、60 年代和 70 年代的老式汽车或肌肉车的原始分配器中内置的机械和真空提前曲线旨在使发动机在使用当时的含铅汽油时发挥最佳性能。在许多情况下,这些分电器中的机械提前弹簧直到发动机转速超过 5,000 rpm 时才允许全部提前量。如果您的客户的汽车已经配备了售后性能更换分电器,您应该知道,许多此类分电器都带有非常保守的提前曲线和有关如何自定义设置提前曲线的说明(很可能被忽略)。现代燃油喷射汽车确实可以使用现代汽油运行良好,因为它们有一台计算机,可以不断调整点火正时和空气/燃料混合物,以实现最大发动机性能、最高的燃油里程和最低的废气排放。几乎所有 1981 年之前制造的汽车都没有此类数字辅助。这意味着,任何希望自己的配备化油器的老式车或肌肉车发挥最佳性能的人,都需要根据汽车实际使用的汽油调整点火火花提前和空气/燃料混合物。
背景:肌肉减少症是肿瘤患者的常见疾病,目前已认识到,患有肌肉减少症的肿瘤患者接受抗肿瘤治疗后,其不良反应比不患有肌肉减少症的患者更严重,长期生存时间更短。抗肿瘤药物虽然有利于肿瘤的消退,但与癌症引起的肌肉萎缩/肌肉减少症、肌血症或肌内脂肪沉积存在干扰和协同作用,且两种情况经常重叠,难以得出结论。近年来,抗肿瘤药物治疗过程中骨骼肌的动态变化越来越受到重视,动态变化不仅指测量基线水平的骨骼肌数量,更注重整个治疗过程中或治疗结束时骨骼肌数量的增加或减少。