▪ 为了改善法国的 LGMD 患者护理,AFM-Téléthon LGMD 同伴支持小组 (Groupe d'Intérêt) 在 Léonard Féasson 教授 (圣艾蒂安) 的帮助下,创建了 LGMD 专用的紧急医疗信息表。 ▪ 此表格为急诊科医生和护理人员提供了需要进行紧急护理时的重要信息(心脏或呼吸系统疾病、应避免的药物和手术、骨折时的应对措施等)。 ▪ 患者可以下载表格并填写个人信息(姓名、LGMD 亚型、全科医生等)、疾病特征和病史。它包含在“kit d'urgence” [急救包] 中,有关人员也可以使用,并有助于安抚患者及其家属。
Respiratory function in SEPN1- related myopathy and LAMA2 -related CMD ..................................................................................................................................... 13 Bone fragility in SEPN1- related myopathy and LAMA2 -related CMD ....... 13 Natural history of Dutch patients ............................................................................. 13 Outcome SEPN1的措施 - 相关的肌病和喇嘛与与CMD相关的CMD ....................................................................................................................................................................................................................................................................................... dystrophy - extracellular matrix ................................................. 15
基于Duchenne肌肉营养不良的研究:转录后控制和非编码RNA在原发性肌病中正常和营养不良的肌肉发育中的作用,Duchenne肌肉营养不良(DMD)肯定是最相关的,这是由于扩散和灭绝而是最相关的。缺陷驻留在X连锁肌营养不良蛋白基因的突变中:在没有这种蛋白质的情况下,肌肉逐渐开始恶化。由于该疾病是由单个基因(单基因疾病)突变引起的,因此从一开始就考虑了基因治疗方法。几年前,我们开创了一种策略,与基因替代不同,包括修饰肌营养不良蛋白mRNA:通过对称为RNA剪接的细胞程序作用,并防止在成熟mRNA(外显子跳过)中包含特定的突变体外显子(跳过),可以恢复恢复过度蛋白质蛋白质蛋白质蛋白质蛋白质蛋白质蛋白质蛋白质的产生。最近,我们将分析扩展到控制肌营养不良蛋白mRNA剪接的蛋白质。在一个研究中,我们发现缺乏特定蛋白(CELF2A)会诱导外显子45的自然跳过,这是一种机制,该机制允许在具有外显子44缺失的DMD受试者中恢复肌营养不良蛋白合成。该项目的一个目标是设计和建立遗传和/或药理治疗,以调节TheCELF2A活动,并测试其能力诱导外显子45的能力。发现这种可能的抑制剂可能会为那些可以治愈外显子45的患者的药理治疗开辟道路。从更一般的角度来看,这项研究还指出了研究不同患者的基因组环境以促进个性化疗法的临床发育的相关性。第二行活动旨在发现新型非典型RNA,长的非编码RNA(LNCRNA)和圆形RNA(CIRCRNA)的DMD发病机理中的作用。这些分子最近被发现并在细胞功能中起重要作用。此外,他们的放松管制通常与不同的病理相关。这个新的创新领域的研究领域有望大大提高我们对控制肌肉功能的基本分子过程的理解,并且还应该构成一个庞大且在很大程度上没有开发的领域,以开发新的疗法和诊断。
估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查此信息收集的时间。请将有关此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),地址:1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1. 报告日期
摘要。成年骨骼肌是一种相对稳定的组织,因为多核肌肉纤维中含有丝质后肌肌。在产后早期生活中,肌肉生长是通过添加骨骼肌干细胞(卫星细胞)或后代来增加肌肉的生长。在Duchenne肌肉营养不良中,我们将以肌肉dys虫为例,肌肉发作缺乏肌营养不良蛋白,并且发生坏死。卫星细胞介导的再生是为了修复和替换坏死的肌肉,但是随着再生肌肉纤维仍然缺乏肌营养不良蛋白,它们会发生进一步的变性和再生周期。AAV基因疗法是治疗杜钦肌营养不良症的有前途的方法。,但对于单剂量的AAV编码为微发育蛋白的AAV必须有效,必须持续存在处理的肌核中,必须靶向舒适的肌营养不良蛋白,并且必须针对数量的核。后一个点至关重要,因为AAV载体仍然是偶发性的,并且在分裂细胞中不会复制。在这里,我们描述和比较了啮齿动物和人类骨骼肌的生长,并讨论了肌肉坏死和再生导致骨骼肌内病毒基因组丧失的证据。此外,预计肌肉生长会导致转导的核稀释,尤其是在非常早期的干预下,但尚不清楚生长是否会导致不足的肌营养不良蛋白以防止肌肉折断。这应该是未来研究的重点。
杜氏肌营养不良症 (DMD) 是一种致命的 X 连锁神经肌肉疾病,由肌营养不良蛋白缺失引起,而肌营养不良蛋白对于肌肉纤维完整性至关重要。肌营养不良蛋白缺失会导致肌纤维反复损伤、慢性炎症、进行性纤维化和肌肉干细胞功能障碍。到目前为止,DMD 仍无法治愈,治疗标准主要限于通过糖皮质激素治疗缓解症状。目前的治疗策略可分为两类。肌营养不良蛋白靶向治疗策略旨在恢复肌营养不良蛋白的表达和/或功能,包括基于基因、基于细胞和蛋白质替代疗法。另一类治疗策略旨在通过针对下游病理变化(包括炎症、纤维化和肌肉萎缩)来改善肌肉功能和质量。本综述介绍了这两条策略的重要发展,特别是那些已进入临床阶段和/或具有巨大临床转化潜力的策略。本文介绍了每种药物在临床前或临床研究中的原理和功效。此外,还对 DMD 患者的基因谱进行了荟萃分析,以了解 DMD 的分子机制。
研究人员正在研究OPMD的疾病改良治疗方法。BB-301的1B/2A期临床试验是一种与腺相关的病毒载体分割的基因治疗,最近对其第一位患者施加了。研究性药物旨在沉默和替代突变的多A结合蛋白核-1(PABPN1)基因。
脊柱肌肉萎缩(SMA)是指从婴儿期或童年开始的一组遗传神经系统疾病,并导致脊柱运动神经元(控制骨骼肌的神经元)的退化。这种退化会导致弱点,肌肉浪费,在最严重的情况下,瘫痪和死亡两岁。SMA影响10,000名新生儿中的大约1个,并且是婴儿和幼儿死亡的主要遗传原因。Nusinersen在美国以Spinraza®(Biogen)的身份销售,是美国食品和药物管理(FDA)批准的第一种治疗SMA治疗的疗法。
SofíaLucilaRodríguezRiveraRivera儿科神经科医生毕业于La Raza国家医疗中心IMSS UNAM。附属于Tecnologico de Monterrey,Tec Salud Zambrano Hellion医院和区域综合医院墨西哥社会保障研究所(IMSS)蒙特雷(NuevoLeón)的33号。西班牙默西亚大学的癫痫学家。来自阿根廷布宜诺斯艾利斯的Arturo Jauretche国立大学的神经生理学家。是墨西哥神经病学学院,墨西哥儿科神经病学会和国际反癫痫联盟墨西哥分会的活跃成员。
治愈 SMA(M. Schroth,JD),伊利诺伊州埃尔克格罗夫村;阿肯色大学医科学院神经内科儿科(KA),阿肯色州儿童医院,小石城;神经内科和神经肌肉护理中心(DC),德克萨斯州登顿;哥伦比亚大学欧文医学中心神经内科和儿科(DCDV),纽约;科罗拉多大学医学院儿科(MAG),奥罗拉;耶鲁大学医学院儿科(神经内科)(CI),康涅狄格州纽黑文;芝加哥 Ann & Robert H Lurie 儿童医院儿科和神经内科(NLK),伊利诺伊州西北范伯格医学院;路易斯维尔大学诺顿儿童医疗集团神经内科(AL);密歇根大学健康中心儿科(ENK),安娜堡;英国伦敦大奥蒙德街医院信托机构 Dubowitz 神经肌肉中心 (M. Scoto) 和英国伦敦大学学院大奥蒙德街儿童健康研究所;卡罗琳斯卡医学院妇女和儿童健康系 (TS)、卡罗琳斯卡大学医院儿童神经病学系、瑞典斯德哥尔摩阿斯特丽德林格伦儿童医院和香港新界沙田香港科学园神经肌肉骨骼修复医学中心;英国牛津大学 MDUK 牛津神经肌肉中心和 NIHR 牛津生物医学研究中心 (LS)、比利时列日大学儿科和列日大学医院神经肌肉中心;俄亥俄州辛辛那提儿童医院医疗中心和辛辛那提大学医学院儿科神经病学分部 (CT);基因治疗中心 (MAW)、阿比盖尔韦克斯纳研究所、全国儿童医院、儿科和神经病学部、俄亥俄州立大学韦克斯纳医学中心、哥伦布;以及运动神经元疾病科 (JFV-C)、拉菲医院、IIS La Fe、CIBERER、西班牙瓦伦西亚大学。