微生物与植物之间的相互作用已成为微生物学和植物生物学的重要研究领域。非生物应力,包括干旱,盐度和重金属,对全球植物生长产生了实质性影响。这些压力源,无论是单独或结合发生的,都会破坏营养的吸收并阻碍植物的整体发展(Mushtaq等,2023)。然而,有益的微生物在增强对这种非生物挑战的植物弹性方面表现出了潜力(Cardarelli等,2022; El-Shamy等,2022)。居住在根际和植物圈中的某些微生物可以促进植物水和养分,同时提供防止有害环境毒素的保护(Degani,2021; Redondo等,2022)。过去十年见证了由测序和毛质技术的进步驱动的显着步伐,从而揭示了在非生物胁迫下构成植物 - 微生物相互作用的复杂机制。这些细微的关系正在逐渐被解密,为预测和调节策略铺平道路。利用植物 - 微生物相互作用来支持植物适应非生物压力,在农业生产力,生物修复策略和生态可持续性中具有变革性的潜力。这项研究的努力旨在彰显微生物在增强植物抵抗非生物胁迫方面的重要作用。调查还深入研究了根间微生物群落对植物更广泛健康的复杂影响。Qi等。Qi等。在这个研究主题中,十项学术贡献深入研究了多种机制,通过这些机制,微生物可以帮助植物适应环境爆发,从而维护其生长和生存。总的来说,这些文章提供了有关微生物如何促进生态系统功能和植物福祉的全面观点。响应紧急市场需求和严重的非生物压力,增强植物生产和生存已成为研究的核心重点。利用RNA干扰(RNAI)技术来构建油酸去饱和酶(FAD2)基因的IHPRNA植物表达载体,从而导致油酸含量升高,并降低了菜籽中亚油酸和亚麻酸的水平。值得注意的是,根际微生物群落作为遗传评估的指标
图像 - 基础丰度多重免疫特征:翻译就业。国际免疫肿瘤boumarker;页,D.B。; Broeckx,G。;冈萨雷斯(C.A.);伯基,c。墨菲,c。 Reis-Filho,J.S。; ly,a。; Harms,P.W。; Gupta,R.R。; Vieth,M。;血液,AI。;卡希拉(M。) Cosle,Z。;远处,P.J。van; Veranded,s。; Thasgaard,J。; Khiroya,r。 Abduljabbar,K。; Haab,G。Acosta; ACS,b。亚当斯(Adams) Almeida,J.S。; cover-cloud,i。 Azmoudeh-Ardalan,f。; Badve,s。; Baharun,N.B。; Bellolio,E.R。;祝福,诉; Blenman,K.R。; Fujimoto,L。Botiny Mendo;俄勒冈州汉堡; Chardas,A。; Cheang,M.C ..;复制,f。;库珀,洛杉矶; Coosemans,A。;站立,g。 Portela,F.L。dantes; Deman,f。; Demaria,s。; Dudgeon,S.N。; Elghazawy,M。; Fernand-Martin,c。 Fineberg,s。; Fox,S.B。; Giltnane,J.M。; Gnjatic,s。; Constance-Ericson,P.I。; Grigoriadis,A。; Halama,n。;汉娜(M.G.); Harbhajanka,A。; Hart,S.N。; Hartman,J。; Hewitt,S。; H.M。; Husain,Z。; Irshad,s。; Janssen,E.A; Cataoka,T.R。; Kawaguchi,K。; A.I. Khramsov; Kiraz,U。 Kirtani,P。;代码,L.L。; Corsica,K。; Acturk,G。; Scott,E。; E。;厨师,a。; Laenkholm,A.V。; Lang-Schwarz,c。 Larsimont,d。; J.K. Reading; Lerossau,M。; li,x。; Madabhus,A。; Maley,S.K。; Narasimhamhamurthy,V。Manur; Marks,D.K。;麦当劳E.S.; Pinard,C.J。; Rau,T.T。; Mehrotra,r。 Michels,s。; Kharidehal,d。; mirs,f。;米塔尔(Mittal)摩尔,D.A。; Mushtaq,s。; Nighat,H。; Papathomas,T。; lon-lorca,f。; Pera,R.D。; Pinto-Karden,J.C。;李子,G。; Pusztai,L。;新泽西州拉杰普特;报告,B.L。; Ribeiro,J.M。2024,第(262,3,(2024),pp。271-288)