音乐结构的规律性被体验为具有重复和周期性模式的强结构化纹理,音乐理念以可感知的形状呈现在人类脑海中。我们最近表明,对音乐内容的操纵(即音乐结构的偏差)会影响对音乐的感知。这些偏差是由音乐专家检测到的,包含这些偏差的音乐作品被标记为不规则的。在本研究中,我们用人工智能算法取代了参与检测(不)规则性的人类专家。我们评估了八个测量熵和信息内容的变量,可以使用称为音乐信息动力学的计算模型和不同的观点对每个音乐作品进行分析。使用 160 个音乐片段测试了该算法。初步统计分析表明,八个变量中有三个是规律性的显着预测因子(E
摘要。自 2015 年以来,商业手势界面扩大了研究人员和艺术家使用新型肌电图 (EMG) 生物特征数据的范围。EMG 数据可测量肌肉幅度,并使我们能够通过与数字媒体进行自然手势交互来增强人机交互 (HCI)。虚拟现实 (VR) 是一种沉浸式技术,能够模拟现实世界及其抽象。然而,当前的商业 VR 技术不具备处理和使用生物特征信息的能力。与当前商业 VR 设备中使用光学传感器进行手势识别相比,在 VR 中使用生物特征识别技术可以更好地描述手势细节并使用复杂的自定义手势,例如器乐演奏中的手势。然而,EMG 数据很复杂,必须使用机器学习来使用它。本研究使用 Myo 臂带对 Wekinator 中的四种自定义手势进行分类,并观察它们的预测准确性和表示(包括或省略信号开始)以在 VR 中创作音乐。结果表明,根据手势表示类型,特定的回归和分类模型在对 VR 中高级音乐 HCI 的四种音乐手势进行分类时最为准确。我们应用并记录了我们的结果,表明 EMG 生物识别技术有望成为未来 VR 中交互式音乐创作系统的良方。
摘要:关于音乐演奏者有意表达情绪的神经相关性的研究仍然有限。在本研究中,我们试图评估音乐家的脑电图模式,这些音乐家被要求演奏简单的钢琴乐谱,同时操纵他们的演奏方式来表达特定的对比情绪,并在唤醒度和效价量表上自我评价他们所反映的情绪。在情绪演奏任务中,参与者被要求即兴创作变奏,以传达目标情绪。相比之下,在中性演奏任务中,参与者被要求精确地演奏相同的乐曲,以获得控制演奏过程中运动和感觉激活一般模式的数据。信号的频谱分析是作为初始步骤应用的,以便能够将研究结果与更广泛的音乐情感研究领域联系起来。情绪演奏与中性演奏的实验对比被用来探索与不同情绪状态相关的大脑活动模式。情绪和中性演奏任务在意向转移情绪唤起状态和效价水平方面存在很大差异。在苦恼/兴奋和中性/沮丧/放松演奏之间观察到脑电图活动的差异。
摘要:本文讨论了音乐情感识别技术和人工智能(AI)在音乐教育中的融合和应用。随着人工智能技术的快速发展,其应用越来越广泛地用于教育领域,尤其是在音乐教育领域。AI不仅提高了教学效率,而且还为学生提供了更加个性化和高效的学习经验。作为AI的重要分支,音乐情感识别技术可以准确地识别和解释音乐作品中的旋律,节奏和和谐元素所表达的情感和艺术概念,这对于学生在音乐欣赏和学习过程中深入了解音乐工程的含义和本质具有重要意义。本文分析了音乐情感识别和音乐教育中AI整合的当前状况,优势和挑战,并提出了相应的策略和建议,旨在在音乐教育领域提供理论参考和实践指导。
可以通过弹性因素在整个生命的过程中动态触发抗弹力机制,以防止个体发展与压力相关的病理,例如创伤后应激障碍(PTSD)。一些介入的研究表明,经历创伤事件后听音乐和音乐练习会降低PTSD的强度,但令人惊讶的是,我们所知的没有研究将音乐经验探索为在可能发生创伤事件的可能发生之前的潜在韧性因素。在当前的概念分析中,我们试图总结有关弹性概念的了解以及音乐经验如何触发PTSD中的两种关键机制:情感调节和认知控制。我们的假设是,在创伤前时期,通过音乐经验刺激这两种机制可以帮助防止情绪失调的症状和PTSD中存在的入侵。然后,我们开发了一个新的框架,以指导未来的研究,旨在隔离和研究音乐经验在响应创伤方面发展PTSD的保护作用。这种研究的临床应用可能是开发促进情绪调节和认知控制的创伤前培训,该培训的目的是面临有可能发展PTSD的人群,例如医护人员,警察和军事人员。
摘要:本文介绍了一种结合硬件和软件的定制系统,该系统可感知表演者身体因肌肉收缩而产生的生理信号,并将其转换为计算机合成的声音。我们的目标是在该领域研究历史的基础上开发一个完整的集成系统,供非专业音乐家使用。我们描述了 Embodied AudioVisual 交互肌电图,这是一个端到端系统,涵盖音乐家身体上的可穿戴传感、基于定制微控制器的生物信号采集硬件、基于机器学习的手势到声音映射中间件和基于软件的粒度合成声音输出。一种新颖的硬件设计以最少的模拟预处理将来自肌肉的肌电图信号数字化,并在音频信号处理链中将其作为类兼容的音频和无线 MIDI 接口处理。映射层在强化学习配置中实现了交互式机器学习工作流程,并可以将手势特征映射到多维信息空间中的听觉元数据。该系统调整了现有的机器学习和合成模块,使其与硬件配合使用,形成了一个集成的端到端系统。我们通过一系列公开演讲和一系列音乐从业者的音乐会表演探索了其作为数字乐器的潜力。
摘要:音乐的深层人际性质表明,音乐衍生的神经可塑性与人际时间动态或同步性有关。人际神经同步 (INS) 已被发现与社交互动期间行为同步性的增加相关,并且可能代表支持它们的机制。由于社交互动通常没有明确的界限,而且许多互动是间歇性开始和停止的,我们假设在互动后可以检测到 INS 的神经特征。本研究旨在使用前后范式来调查这一假设,测量合作二元音乐互动之前和之后的脑间相位一致性。在以合作敲击游戏形式进行的音乐互动之前和之后的静默、非互动期间,十对二元组进行了同步脑电图 (EEG) 记录。在后条件下发现 delta 波段 INS 在互动后显著增加,并且与之前互动的持续时间呈正相关。这些发现表明了一种机制,通过该机制,社交互动在中断后可以有效地继续下去,并有可能在纵向研究中测量神经可塑性适应。这些发现还支持了这样一种观点,即社交互动过程中的 INS 代表了维持同步的主动机制,而不仅仅是刺激和运动活动的并行处理。
自 20 世纪初以来,脑电图 (EEG) 已被广泛应用于医疗和各种大脑过程的研究。随着技术的快速发展,越来越多精确和先进的研究工具应运而生。然而,这些设备的主要限制因素往往是价格高,有些设备便携性差,设置时间长。尽管如此,市场上还是出现了各种各样的无线 EEG 设备,它们没有这些限制,但信号质量较低。同时对多名参与者进行 EEG 记录的技术以及新的技术解决方案为了解群体的大脑情绪动态提供了更多可能性。大量研究对许多移动设备进行了比较和测试,但结果却相互矛盾。因此,在开展大规模研究之前,测试特定无线设备在特定研究环境中的可靠性非常重要。本研究的目的是评估两种无线设备(g.tech Nautilus SAHARA 电极和 Emotiv™ Epoc +)用于检测音乐情绪的可靠性,并与金标准 EEG 设备进行对比。16 名参与者报告说,在听他们最喜欢的令人毛骨悚然的音乐片段时,他们感到情绪愉悦(从低度愉悦到音乐般的寒意)。在情绪检测方面,我们的结果显示,在 alpha 频段的左前额叶和左颞叶区域,Epoc + 与金标准设备之间存在统计学上的显著一致性。我们验证了 Emotiv™ Epoc + 在音乐情绪研究中的用途。我们没有发现 g.tech 和黄金标准之间存在任何显著的一致性。这表明 Emotiv Epoc 更适合在自然环境中调查音乐情绪。
摘要:本文介绍了一种结合硬件和软件的定制系统,该系统可感知表演者身体因肌肉收缩而产生的生理信号,并将其转换为计算机合成的声音。我们的目标是在该领域研究历史的基础上开发一个完整的集成系统,供非专业音乐家使用。我们描述了 Embodied AudioVisual 交互肌电图,这是一个端到端系统,涵盖音乐家身体上的可穿戴传感、基于定制微控制器的生物信号采集硬件、基于机器学习的手势到声音映射中间件和基于软件的粒度合成声音输出。一种新颖的硬件设计以最少的模拟预处理将来自肌肉的肌电图信号数字化,并在音频信号处理链中将其作为类兼容的音频和无线 MIDI 接口处理。映射层在强化学习配置中实现了交互式机器学习工作流程,并可以将手势特征映射到多维信息空间中的听觉元数据。该系统调整了现有的机器学习和合成模块,使其与硬件配合使用,形成了一个集成的端到端系统。我们通过一系列公开演讲和一系列音乐从业者的音乐会表演探索了其作为数字乐器的潜力。
自 20 世纪初以来,脑电图 (EEG) 已被广泛应用于医疗和各种大脑过程的研究。随着技术的快速发展,越来越多精确和先进的研究工具应运而生。然而,这些设备的主要限制因素往往是价格高,有些设备便携性差,设置时间长。尽管如此,市场上还是出现了各种各样的无线 EEG 设备,它们没有这些限制,但信号质量较低。同时对多名参与者进行 EEG 记录的技术以及新的技术解决方案为了解群体的大脑情绪动态提供了更多可能性。大量研究对许多移动设备进行了比较和测试,但结果却相互矛盾。因此,在开展大规模研究之前,测试特定无线设备在特定研究环境中的可靠性非常重要。本研究的目的是评估两种无线设备(g.tech Nautilus SAHARA 电极和 Emotiv™ Epoc +)用于检测音乐情绪的可靠性,并与金标准 EEG 设备进行对比。16 名参与者报告说,在听他们最喜欢的令人毛骨悚然的音乐片段时,他们感到情绪愉悦(从低度愉悦到音乐般的寒意)。在情绪检测方面,我们的结果显示,在 alpha 频段的左前额叶和左颞叶区域,Epoc + 与金标准设备之间存在统计学上的显著一致性。我们验证了 Emotiv™ Epoc + 在音乐情绪研究中的用途。我们没有发现 g.tech 和黄金标准之间存在任何显著的一致性。这表明 Emotiv Epoc 更适合在自然环境中调查音乐情绪。