1。Antman EM,Loscalzo J.心脏病学的精确医学。nat Rev car-diol。2016; 13(10):591-602。 2。 Kuss O,Opitz ME,Brandstetter LV,Schlesinger S,Roden M,HoyerA。 2型糖尿病治疗如何用于精密糖尿病ogy? 来自174个随机ISED试验的血糖控制数据的元回归。 糖尿病学。 2023; 66:1622-1632。 3。 Jameson JL,Longo DL。 精确医学 - 个性化,问题和有前途。 n Engl J Med。 2015; 372(23):2229-2234。 4。 Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。 精确医学:超出拐点。 SCI Transl Med。 2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2016; 13(10):591-602。2。Kuss O,Opitz ME,Brandstetter LV,Schlesinger S,Roden M,HoyerA。2型糖尿病治疗如何用于精密糖尿病ogy?来自174个随机ISED试验的血糖控制数据的元回归。糖尿病学。2023; 66:1622-1632。3。Jameson JL,Longo DL。精确医学 - 个性化,问题和有前途。n Engl J Med。2015; 372(23):2229-2234。 4。 Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。 精确医学:超出拐点。 SCI Transl Med。 2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2015; 372(23):2229-2234。4。Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。精确医学:超出拐点。SCI Transl Med。2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2015; 7(300):1-3。5。丹尼斯JM。2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。糖尿病。2020; 69(10):2075-2085。6。Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。Wilkinson J,Arnold KF,Murray EJ等。现实的时间检查机器学习驱动的精密药物的承诺。柳叶刀数字健康。2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2020; 2(12):E677-E680。7。Prasad RB,Groop L. 2型糖尿病中的精密药物。J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。J Intern Med。2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2019; 285(1):40-48。8。tsapas A,Karagiannis T,Kakotrichi P等。降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。糖尿病OBES METAB。糖尿病OBES METAB。2021; 23(9):2116-2124。9。Blundell J,Finlayson G,Axelsen M等。每周一次的半紫鲁丁对食欲,饮食的控制,食物的控制和体重的影响。糖尿病OBES METAB。 2017; 19(9):1242-1251。 10。 Palmer SC,Mavridis D,Nicolucci A等。 比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。 JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。糖尿病OBES METAB。2017; 19(9):1242-1251。 10。 Palmer SC,Mavridis D,Nicolucci A等。 比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。 JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。2017; 19(9):1242-1251。10。Palmer SC,Mavridis D,Nicolucci A等。比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。JAMA。2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。2016; 316(3):313-324。11。Palmer SC,Tendal B,Mustafa RA等。葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。bmj。2021; 372:M4573。12。tsapas A,Avgerinos I,Karagiannis T等。降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。Ann Intern Med。 2020; 173(4):278-286。Ann Intern Med。2020; 173(4):278-286。
本报告是作为中量可持续融资设施(MIDSEFF)的碳融资顾问协会的一部分准备的。本金是欧洲重建与发展银行(EBRD),以及银行的特殊股东基金(SSF)的任务 - 另请参见www.turkishcarbonmarket.com本报告的作者是Imogen Long,Carolina Changan,Darragh Conway,Szymon Mikolajczyk(气候焦点),Ebru Voyvoda(中东技术大学),ErinçYeldan(Kadir Have ahmetAt Ath都艾尔·艾尔·艾尔·艾尔·艾尔坦(ErinçYeldan)大学和Engin Mert(气候派手)。我们要对以下有价值的投入和反馈(字母内)表示感谢:AbdulkadirBektaş,AydınSargın,CerenFırat,Ecem Konak,Ecem Konak,Emir Konak,Emir Aldan,Emir Aldan,EyüpKaanMoralian,Ezgi akgedik akgedik akgedik akgedik keemafa keemaf, AllözGündüz,Suatözbek,Suatşağban,OkanUğurlu,Orhan Solak和ÖyküUyanık。来自Ebru,MuharremAşkın,Elif Bakna,ArifCemGündoğan,Gerrit Hold,Ishi MineIşık,Emre Oguzoncul和Jan-Willem van de Ven。在本项目过程中提供支持的完整清单,包括贸易部,能源和自然资源部,环境,城市化和气候改变者,工业部土耳其水泥(Türkçimemento)和土耳其钢生产商协会(Tçüd)公司。
编辑委员会 Erdal Karaöz,伊斯坦布尔伊斯坦布尔大学医学院组织学与胚胎学系 Reşat Apak,伊斯坦布尔大学 Cerrahpaşa 研究信息系统工程学院化学系,伊斯坦布尔,土耳其 Khosrow Adeli,多伦多大学儿童医院分子医学研究所,安大略省多伦多,加拿大 Fatih Gültekin,安卡拉洛克曼·赫基姆大学医学院医学生物化学系 Anyla Bulo-Kasneci,地拉那“特蕾莎修女”大学医院中心实验室部 Orhan Değer,土耳其特拉布宗卡拉德尼兹技术大学医学院医学生物化学系 Elif Demirkan,乌鲁达艺术与科学学院生物系土耳其布尔萨大学 Z. Günnur Dikmen ,哈塞特佩大学医学院生物化学系,土耳其安卡拉 Miral Dizdaroğlu ,美国马里兰州盖瑟斯堡国家标准与技术研究所 Mustafa BA Djamgoz ,英国伦敦帝国理工学院自然科学学院生命科学系 Gökhan Hotamişlıgil ,美国波士顿哈佛大学公共卫生学院遗传学与复杂疾病系 Mehmet Kesimer ,美国北卡罗来纳州北卡罗来纳大学教堂山分校 Marsico 肺研究所病理学与实验室医学系 İrfan Küfrevioğlu ,土耳其埃尔祖鲁姆阿塔图尔克大学艺术与科学学院化学系 Nada Majkic-Singh ,塞尔维亚贝尔格莱德塞尔维亚医学生物化学研究所、制药学院和临床中心Gülgün Oktay,土耳其伊兹密尔 Dokuz Eylül 大学医学院医学生物化学系
Jayesh Barve,印度 Francesco Basile,意大利 Olga Battaïa,法国 Mohamed Becherif,法国 Arezki Benfdila,阿尔及利亚 Mohamed Benrejeb,突尼斯 Lyes Benyoucef,法国 Gautam Biswas,美国 Sergio Bittanti,意大利 Joaquim Blesa,西班牙 José Boaventura-Cunha,葡萄牙 Jozsef Bokor,匈牙利 Patrice Bonhomme,法国 Wolfgang Borutzky,德国 Kosta Boshnakov 保加利亚 Valérie Botta-Genoulaz,法国 Mohamed Boudour,阿尔及利亚 Nizar Bouguila,加拿大 Moussa Boukhnifer,法国 Ahmed Boukhnifer,英国 Humberto Bustince,西班牙 Francisco Javier Cabrerizo,西班牙 Claudia Califano,意大利 Marco Campi,意大利 Owen Casha,马耳他 Gabriela Cembrano,西班牙 Abdelkader Chaari,突尼斯 Naoufel Cheikhrouhou,瑞士 Long Cheng,中国 Vincent Cheutet,法国 Francisco Chiclana,英国 Feng Chu,法国 Tayfun Çimen,土耳其 Moog Claude,法国 Carlos Cobos,哥伦比亚 Giuseppe Conte,意大利 Maria Letizia Corradini,意大利 Telmo Cunha,葡萄牙 Mohammed Dahane,法国 Elena De Santis,意大利 Carl James Debono,马耳他 Xavier Delorme,法国Isabel Demongodin,法国 Kevin Deng,中国 Wael Dghais,突尼斯 Mohamed Djemai,法国 Stefan Domek,波兰 Mariagrazia Dotoli,意大利 Ioan Dumitrache,罗马尼亚 Mustafa Seckin Durmus,土耳其 Luminita Duta,罗马尼亚 Ahmed El Hajjaji,法国 Abdennour El Rhalibi,英国 Sourour Elloumi,法国 Ali Emrouznejad,英国 Teresa Escobet,西班牙 Laureano F. Escudero,西班牙 Maria Pia Fanti,意大利 José Fernández,西班牙 Florin G. Filip,罗马尼亚 Gabi Florescu,罗马尼亚 Farhat Fnaiech,突尼斯
•博士后的家伙(3)o穆斯塔法·迪米奇(Mustafa Demirci)2023年当前职位:tba o emre tufekcioglu博士2015 - 2016 - 2016年当前职位:埃斯基塞希尔大学助理教授,埃斯基塞希尔大学,土耳其埃斯基塞希尔,土耳其o alper sisman o alper sisman o alper sisman 2011 - 2012年现任职位:助理教授,电气和电子学院,•凯尔·凯尔·凯尔·凯尔(Marmaranic Engineering),Marmara•Marmara,是Marmara,是Marmara o。 Ozge Uyanik博士候选人博士预计在2026年o塞缪尔·多纳图斯(Samuel Donatus)博士学生,与J. Wang Ph.D.预计在2026年o何塞·保罗(Jose Paul)博士在机械工程中2024年论文标题:基于超声的动态参考反射技术,用于同时特定重力和温度估计当前位置:Cemex O工程师O John Cotter博士。在机械工程学2022年论文中:散装玻璃作为结构元素的压缩加固,当前位置:奥兰多Transtek International Group的首席研究员,Fl o Saleh Alhumaid,博士在机械工程2022年论文中的文章:一种非接触磁铁磁铁收割机的汽车再生悬架系统,与D. Hess Current Chrentry Chartry Chartry:Saudi Arabia Arabia o Hani Alhazmi o Hani Alhazmi,Ph.D.在机械工程学2020年论文中:使用表面声波当前位置对液体高度估计和模拟验证螺栓张力定量的实验研究:Saudi Arabia o Joel Cooper博士的Umm al-Qura大学助理教授。在机械工程2020年论文中:使用振动和声学力对哺乳动物细胞的操纵和模式,与D. Gallant当前位置共同助理:Triton Systems,Inc。项目工程师。Chelmsford,MA
Emre Kara* 1,MustafaSürmen摘要:牧场,具有丰富的动植物生物多样性,作为牲畜粗糙的来源非常重要。牧场植被模式差异很大。为了管理保护和利用目标,需要确定和分析指标因素。在爱琴海地区的牧场中,斜坡因子可能会极大地影响靠近基地牧场的地区的牧场植物生物多样性。为了研究由坡度引起的植物生物多样性的空间分布和物种变化,在Koçarlı地区(Aydın /Türkiye)采样了6个具有不同斜率的牧场地点。采样。在抽样后,确定了指标物种和物种分布以及丰度。alpha生物多样性指数用于通过分析来确定物种生物多样性的变化。她的分析测试S(物种丰富度),H(Shannon-Wiener多样性指数)和E(平等)之间的关系。此方法旨在检查物种数量的贡献和在多样性背景下的公平概念。根据分析获得的信息,可以看出坡度的增加可能会导致物种生物多样性的下降。在低基地和坡度的牧场中发现了更多的物种多样性。侵蚀和水运输等因素会影响高坡上的牧场的冠层和物种丰度。但是,其他因素(例如放牧强度)可以扭转这种情况。为此,已经确定斜率是基于放牧能力和植被研究中放牧动物物种的管理计划时的重要环境变量。关键词:阿尔法生物多样性,牧场植被,香农 - 维也纳指数,牧场生态学。
阿尔伯克基市。(2020 年)。开发流程手册 (DPM)。阿尔伯克基:阿尔伯克基市。EPA 2022 年建筑通用许可证 – 网站链接包括 NPDES 建筑活动排放通用许可证、附录和情况说明书。EPA NPDES 中里奥格兰德河流域 MS4 许可证 – 网站链接包含 NPDES 中里奥格兰德河流域 MS4s 通用许可证、#NMR04A000(2014 年)、情况说明书和 MS4 年度报告表。 EPA NPDES 新墨西哥州小型 MS4 排放雨水通用许可证 – 网页链接包含 NPDES 新墨西哥州小型 MS4 排放通用许可证、#NMR040000 (2007)、情况说明书、重新颁发 NMR040000 的提案 (2015) 和 2015 年新墨西哥州小型 MS4 排放通用许可证草案:EPA NPDES 工业活动雨水排放多部门通用许可证 (MSGP) – 网页链接概述了该计划和 2021 MSGP。EPA。(2014 年)。新墨西哥州中里奥格兰德流域开发前水文状况估算。John Kosco, PE、Khalid Alvi, PE 和 Mustafa Faizullabhoy, PE,EPA 废水管理办公室,水许可证处,市政部门。EPA。(2015 年)。估算新墨西哥州城市化地区的开发前水文情况。Tetra Tech 和 EPA 废水管理办公室、水许可证处、市政部门。NMDOT。(2018 年)。NMDOT 排水设计手册。Smith Engineering Company、Occam Engineers Inc. 与 NMDOT 排水设计局工程师和 Thompson Engineering Consultants, Inc. 新墨西哥州环境部与新墨西哥州工程师办公室协调。(2017 年)。新墨西哥州绿色基础设施实施。美国农业部,农业研究服务处,农业手册编号 703。(1997 年)。预测水土侵蚀:使用修订的通用土壤流失方程(RUSLE)进行保护规划的指南。
标题:从严重的急性营养不良作者中恢复的儿童的微生物指导的治疗食品:史蒂文·J·哈特曼(Steven J.Munirul Islam 4,Mahabub Uz Zaman 4,Sayeeda Huq 4,Mustafa Mahfuz 4,Md。Tazul Islam 5,Kallol Mukherji 5,Vaha Akbary Moghaddam 6,Robert Y. Chen 1,2,Michael A.省6,Daniel M. Webber 1,2,3,Suzanne Henrissat 1,2,Bernard Henrissat 7,8,Nicolas Terrapon 9,Dmitry A. Rodionov 10,Andrei L. Osterman 10,Andrei L. Osterman 10,Andrei L. Osterman 10,Andrei J. Barratt 1,2,3通信:孟加拉国腹泻病研究,孟加拉国(ICDDR,B),达卡1212,孟加拉国5 Terre des Hommes荷兰 - 孟加拉国乡村办公室,Dhaka,Dhaka,Dhaka,1209,孟加拉国6,孟加拉国6统计基因组司,基因组学部,遗传学系,华盛顿大学医学院,MO 63110 USICEN,USINE STROCENG,DOMECH and osine Sopicy and Docinech and osine and,美国7 7 7 Sopication and Domine and Docition and Dosonicech and Docigoins。生物工程),丹麦技术大学,DK-2800公斤。Lyngby, Denmark 8 Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia 9 Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288, Marseille, France 10 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA一句话摘要:针对特定肠道细菌类群的微生物群指导的食物促进了孟加拉国儿童从严重的急性营养不良中恢复过来的儿童。关键词:营养不良;严重和中度急性营养不良;肠道微生物组指导的治疗食品;随机对照临床试验;元基因组组装的基因组; Prevotella copri应变级多样性;复杂碳水化合物代谢的微生物途径;多糖利用基因座;基于适体的蛋白质组学分析。
•博士后的家伙(3)o Mustafa Demirci Demirci 2023当前职位:TBA o Emre Tufekcioglu博士2015 - 2016 - 2016年当前职位:Eskisehir University,Eskisehir University,Eskisehir,Turkey,Turkey o Alper Sisman o Alper Sisman 2011 - 2012年现任职位:助理教授,电气和电子工程学,Marmarains Engineering,Marmara•Marmara,是Marmara o。何塞·保罗(Jose Paul)博士候选人,与A. Kumar Ph.D.共同顾问预计在2024年O Tia Sayers博士候选人博士预计在2025年O Ozge Uyanik博士学生博士预计在2026年o塞缪尔·多纳图斯(Samuel Donatus)博士学生,与J. Wang Ph.D.预计在2026年o约翰·科特(John Cotter)博士在机械工程学2022年论文中:散装玻璃作为结构元素的压缩加固,当前位置:奥兰多Transtek International Group的首席研究员,Fl o Saleh Alhumaid,博士机械工程学2022年论文杂志:一款非接触磁铁磁铁收割机的汽车再生悬架系统,与D. Hess当前职位共同努力:沙特阿拉伯冰川大学助理教授O Joel Cooper,博士。在机械工程2020年论文中:使用振动和声学力对哺乳动物细胞进行操纵和模式,与D. Gallant Current位置共同助理:Triton Systems,Inc。项目工程师。Chelmsford,Ma O Hani Alhazmi,Ph.D。在机械工程学2020年论文中:使用表面声波的液体高度估计和螺栓张力定量验证的实验研究,使用表面声波当前位置:Saudi Arabia Arabia o Marwan Belaed的Umm al-Qura University的助理教授,博士学位。在机械工程2020年论文中:仿真和验证热能储能的相变材料,与M. Rahman Current职位共同咨询:太阳能工程顾问为DBA,DBA,TAMPA,FL O Matt Trapuzzano,Ph.D.。机械工程2019
Dichalcogenides (TMDCs) Ahmad Nizamuddin bin Muhammad Mustafa Sami Ramadan 1 , Peter K. Petrov 1 , Huanyu Zhou 1 , Giuseppe Mallia 1 , Nicholas Harrison 1 , Yasir Noori 2 , Shibin Thomas 2 , Victoria Greenacre 2 , Gill Reid 2 , Philip N Bartlett 2 , Kees de Groot 2 , Norbert Klein 1 1 Imperial College London, London, United Kingdom 2 University of Southampton, Southampton, United Kingdom a.bin-muhammad-mustafa21@imperial.ac.uk Two-dimensional (2D) heterostructures composed of graphene and Transition Metal Dichalcogenides (TMDCs) have garnered significant attention owing to their unique physics and potential applications in diverse设备。TMDC,包括MOS 2,WS 2,Mose 2和WSE 2,由于其带隙范围和强烈的轻度 - 互动,因此对电子和光电应用受到了电子和光电应用的青睐。TMDC和石墨烯中都没有悬空键,允许在异质结构中无缝集成,与单物质构型相比,为出色的设备铺平了道路。在使用机械去角质堆叠单个层的同时,化学蒸气沉积(CVD),电沉积和原子层沉积的最新进展为大面积的生长和可伸缩性提供了希望[1] [2]。但是,需要在生长后或生长后的高温暴露,可能会改变石墨烯的特性。我们研究了硫退火对石墨烯对TMDCS生长的电和结构特性的影响。在各种条件下,在温度范围为300-800°C的温度下进行系统退火。参考我们的发现表明,真空退火在石墨烯中诱导蚀刻,这会因硫种类的存在而加剧,从而导致电性能显着降解(图1)。值得注意的是,用自组装单层涂层的石墨烯会减轻这种降解,从而使高质量TMDC在石墨烯上沉积。MOS 2和WS 2对石墨烯的电沉积,然后进行硫退火后处理证明了该策略的功效。这项研究阐明了硫退火在影响石墨烯质量中的关键作用,并为TMDC在石墨烯上的生长铺平了道路,用于高性能电子应用。